188/4 E-Commerce Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrasse 9-11/188, A-1040 Vienna, Austria

Ontology-based Matchmaking to Provide Personalized Recommendations for Tourists

Authors: 
C. Grün, J. Neidhardt, H. Werthner
Publisher: 
Springer
Proceedings: 
ENTER Conference, Information and Communication Technologies in Tourism 2017
Pages: 
Year: 
2017
Type: 
Speech with proceedings
Hidden Keywords: 
Department Focus: 
Business Informatics
TU Focus: 
Information and Communication Technology
ISBN: 
Abstract: 
This paper addresses the challenges to support tourists in their decision-making during the pre-trip phase and to facilitate the process of identifying those tourism objects that best fit the tourists´ preferences. The latter directly depends on the quality of the matchmaking process, i.e. finding those tourism objects that are most attractive to a particular tourist. To achieve this goal, an innovative approach is introduced that matches tourist profiles with the characteristics of tourism objects in order to obtain a ranked list of appropriate objects for a particular tourist. The matchmaking process leverages tourist factors as a shortcut to propose a first user profile and related to this, a first set of tourism objects. User feedback is then used to dynamically adapt the tourist profile and thus refine the set of recommended objects. Our approach is tested through a prototypical recommender system that suggests tourists in Vienna attractions that are tailored to their personal needs. Furthermore, a user study is conducted by asking people to interact with the system and fill in a questionnaire afterwards.
Abstract German: 
This paper addresses the challenges to support tourists in their decision-making during the pre-trip phase and to facilitate the process of identifying those tourism objects that best fit the tourists´ preferences. The latter directly depends on the quality of the matchmaking process, i.e. finding those tourism objects that are most attractive to a particular tourist. To achieve this goal, an innovative approach is introduced that matches tourist profiles with the characteristics of tourism objects in order to obtain a ranked list of appropriate objects for a particular tourist. The matchmaking process leverages tourist factors as a shortcut to propose a first user profile and related to this, a first set of tourism objects. User feedback is then used to dynamically adapt the tourist profile and thus refine the set of recommended objects. Our approach is tested through a prototypical recommender system that suggests tourists in Vienna attractions that are tailored to their personal needs. Furthermore, a user study is conducted by asking people to interact with the system and fill in a questionnaire afterwards.