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Abstract— The skyline query returns the most interesting depend on the situation. Figure 1(b) draws hotels on thePric
tuples according to a set of explicitly defined preferencesraong  Distance plane; Amenity values are shown next to each tuple.
attribute values. This work relaxes this requirement, and dlows Assuming all amenities are equally attractive, the coriveat

users to pose meaningful skyline queries without stating thir - . . .
choices. To compensate for missing knowledge, we first deteme skyline contains hotel&y, 75, for which there is no cheaper

a set of uncertain preferences based on user profiles, i.e.,and closer alternative.
information collected for previous contexts. Then, we defia a
probabilistic contextual skyline query (p-CSQ) that returns the

[ Hotel | Price | Distance | Amenity |

tuples which are interesting with high probability. We emphasize ha 200 10 Pool (P)
that, unlike past work, uncertainty lies within the query and ho 300 10 Spa )
not the data, i.e., it is in the relationships among tuples rther hs 400 15 Internet ()
than in their attribute values. Furthermore, due to the nature ha 200 5 Gym G)
of this uncertainty, popular skyline methods, which rely on a hs 100 20 Internet ()

particular tuple visit order, do not apply for p-CSQs. Therefore,
we present novel non-indexed and index-based algorithms rfo
answering p-CSQs. Our experimental evaluation concludes that
the proposed techniques are significantly more efficient copared

to a standard block nested loops approach.
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I. INTRODUCTION o(© h‘(P)

Given a set of preferences, a skyline query [1] returns the N ' 0
non-dominated records. A tupominatesanother if it is at T h®
least as good (i.e., preferred) in all attributes and $yrtmttter Distance
in at least one. For example, consider a database containing T
information about hotels. A skyline query returns thoseefmot (b) 2d representation
for which there is no cheaper and, at the same time, closer Fig. 1. Hotels example
to the beach alternative. In many cases, it is meaningful toTable | exemplifies CSQs for the three contexts—Cs,
specify preferences with respect to ttentexti.e., the current shown in the first column. The second column contains the
query situation, and pose dynamic skyline queries [2],[#], Hasse diagrams of the contextual preferences, while thé thi
[5], [6], [7]. To emphasize that preferences and dominanpeesents the resulting skylines. Initially, consider ttegt user
relationships are defined relative to a context, we adopt theefers Internet ) over Gym (7), and both over any other
term contextual skyline querig€SQ). Returning to the hotel amenity, when s/he is on a Business trip in June (context
example, a user for her/his business trip may opt for hotel§). Based on these preferences, hotels hy, hs are the
that are close to the airport and, further, provide goodiserv results to the CSQ foC;, as shown in the first row of
The same user for her/his vacation (another context) wouldble |. Althoughhs is more expensive and distant thap,
prefer a hotel close to the beach with a low price. ha, hy, it offers a more desirable amenitg, and hence is not

All previous works assume that the user explicitly statetominated. In addition, the user has specified prefererares f
her/his preferences for each CSQ posed. In this paper, ae retontextsC; (Vacation trip) andC; (in the Summer), with the
this assumption and allow users to pose skyline querig®ut corresponding skylines included in Table I.
stating their preferencesAs a running example, we use the Examine now situatiorC,, (fourth row in Table I), where
hotels dataset illustrated in Figure 1(a). The table costaithe user plans a Business trip in the Summer but states no
information about Price, Distance to the city center arpreferences. To understand the resulting uncertainty’jn
Amenity. Note that the latter is a set-valued attributecsia preferences, consider amenities Interheind PoolP. Should
hotel can offer multiple amenities. For ease of presemati@ (i) / be preferred oveP as inC, (i) P be preferred over
assume hotels with a single amenity; our methods, howeveas, in Cs, or (iii) I and P be equally favorable as i62? In
apply to the most general case. Lower values are preferffadt, all three cases hold with a probability that dependghen
on the first two attributes, whereas for Amenity, prefersnceimilarity of C, to C;, Cs, Cs. Furthermore, the uncertainty




propagates to the dominance relationships, i.e., each hateminance checks and allows progressive output of results.
dominates every other with a probability that depends diowever, when preferences are uncertain, a monotonic order
context. does not exist due to the lack of transitivity, as discussed
in Section IV-A. Thereforep-CSQ necessitates novel query
processing methods.

Our main contributions include the following.

« We introduce uncertain preferences and define probabilis-
Cy: Business, ® ha. ha. hs tic_ contextual skyline querie{CSQ).
June © R » Given a current context; and a set of preferences

for contextsC;s, we propose a simple methodology that

TABLE |
CONTEXTS, PREFERENCES AND CONTEXTUAL SKYLINES

Context | Preferences | Skyline |

(9 derives probabilities for the uncertain preferenceg’in
C,: Vacation ha, ha, hs « We devise non-indexed and index-based algorithms for
® O © processingp-CSQs that are significantly faster than a
standard BNL approach.
® O |, .. _ | o
) 1, N2, R, « We perform an extensive experimental evaluation verify-
Cs: Summer »4 hs . . -
4y (9 ing the efficiency of the proposed algorithms.
_ The remainder of this paper is structured as follows.
Cqy: Business, — ? Section Il reviews relevant bibliography. Section Il defn

Summer

the problem and describes an example. Sections IV and V

. ) present non-indexed and index-based algorithms, resp8gti
Motivated by the previous example, we propose a framgs; answeringp-CSQs. Section VI presents the experimental

work that compensates for missing knowledge in user prefsqits and Section VII concludes this paper.

erences. In particular, we solve two distinct sub-problefis

We determine a set afncertain preferencesuitable for the Il. RELATED WORK

current query context based on users’ profiles. (i) We aidre  Section I1-A reviews bibliography regarding personalizat
uncertainty in dominance relationships, withpeobabilistic systems and contextual preferences. Section 1I-B ovessiew
contextual skyline quergp-CSQ) that returns the tuples notmethods for skylines queries.
dominated with high probability. o

For the first sub-problem, we borrow ideas from persot Personalization Systems
alization systems [8] and, in particular, the preference re There are two ways to define interest on attribute values and
onciliation of [9] and context resolution of [10]. The usetuples.Quantitativepreferences, used in [13], [14], [8], assign
has specified (or, the system has collected) a profile, thatmeric scores to values viaszoring functionimposing a
is, preferences for a set of characteristic contéXts, such total order. For example, values b, ¢ are assigned scores
as a business trip or a vacation. Based on this informatidh9, 0.7, 0.1, respectively. On the other hamgialitative
we assess the similarity of the current query contextto preferences, used in [15], [16], are specified using binary
each C;, and use it to assign probabilities to preferencepredicates and induce strict partial orders. For exampalielev
The uncertainty of preferences also affects dominance relais preferred ovel and ¢, but b, ¢ are indifferent. In this
tionships. For the second sub-problem, the probability of gaper, we focus on qualitative preferences as they are more
tuple to belong to the skyline is set to the probability thasi generic: quantitative can be expressed as qualitativenbut
not dominated by any other tuplg-CSQ returns all records the other way around.
whose aforementioned probability is above a certain thlesh  The general goal of personalization systems is to offer
Note that if all preferences are certain, e.g., wiig¢nexactly custom-tailored services based on collected user proRies.
matches on&’;, p-CSQ reduces to a conventional contextualonalized database systems, e.g., [17], [13], [18], [1#3],[
skyline query. [16], [8], provide ranked query results by combining user

While variations of the first sub-problem have been studiepreferences. The work in [17] augments queries with a prefer
to the best of our knowledge no previous work discusses tblause that functions as a soft constraint; if no tuplesBati
second. Note that probabilistic skylines have appearetien fit, the clause is relaxed. In [13] generic functions that geer
past to handleuncertainty in the tuples’ valuefgll], [12]. quantitative preferences are presented. The works in [18],
Here, they serve a fundamentally different purpose as thgyl] deal with linear combinations of preference scores and
account foruncertainty in the users’ preferencekxisting propose index and view based techniques for ranking tuples.
approaches do not apply ®CSQs for the following reason. For qualitative preferences, [15], [16] introduce a frarogw
Almost all skyline algorithms (with the exception of the bko for composing or accumulating interests. Among the disediss
nested loops (BNL) algorithm) visit tuples in a monotonienethods is the Pareto composition, which corresponds to
order from more to less preferred attribute values. Such #re skyline query reviewed in Section II-B. The work in
order exists even in the case of [11], [12], given that the]8] provides personalized answers by considering pretegn
values can be bounded. This reduces the average numbesp#cified on attribute values and join conditions.



More recently, focus has turned to context-aware personkwer corner of a non-dominated area always belongs to the
ization systems, whereontextual preferencebat only apply skyline. Note that the algorithm must perform duplicateutes
to a particular situation, are defined. The work in [9] is thelimination, because the examined areas are overlappimg. O
most relevant to ours. Given a set of contextual qualitatithe other hand, the Branch and Bound Skyline (BBS) method
preferences, the authors provide a context-aware ranking[2], which also uses an R-tree, is shown to be 1/0 optimal. BBS
query results. For every stored context, they initially maintains (i) a heap of R-tree entries sorted in ascendidgror
compute the similarity to the query conte&t,. Then, they of their minimum distance (MINDIST) to the axes origin, and
assign to each possible ordering of query results a scote t(ig a list of skyline tuples found so far. Upon deheaping an
reflects the degree of agreement between the preferencgs oéntry, the lower corner of its MBB is checked for dominance
and the order. The best order is the one that has the higheginst the list. If it is dominated, the entire subtree isned.
(weighted by the similarities) sum of scores across allextst Otherwise, its children are examined, and those not domdhat
The authors turn to heuristic approaches for finding the beste inserted into the heap. Execution terminates when thg he
order, as the problem is NP-hard. For the case of a singtedepleted. Similar to SFS, BBS visits points according to a
user, the work in [10] solves a similar context-aware ragkirmonotone preference function, but in addition disregaadsd
problem involving quantitative contextual preferencestHis sets of points (inside a subtree) without even accessing.the
paper, rather than computinggéobal order for all tuples, we Analogous results hold when records are packed according to
compute a number dbcal probabilistic orders (the uncertainthe z-order space filling curve [28].
preferences) for the values of each attribute; the finalirmnk  Several extensions and related concepts to the skyling/ quer

is due to the skyline. have been studied. Thi-skyband[2] contains the tuples
i ) dominated by less thak other records; the skyline is the
B. Skyline Query Processing 1-skyband. Theskycube quenj29] returns the tuples not

The skyline query returns the set of not dominated tuplesominated in a specified subset of the dimensions. In the
If records are seen as points in a multi-dimensional spadynamic, or contextual skyline query (CSQ) [2], preference
the skyline query returns the maximal elements, a problemmong attribute values can vary and are specified at query
which has been extensively studied in computational gegmetime. Two recent works [30], [7] discuss CSQs in the presence
literature, e.g., [19]. The seminal work of [1] presentsimas of attributes with partially ordered domains. In the singple
external memory algorithms. The most well-known metho@SQ form, an exemplar recorg is provided so that all
is Block Nested Loops (BNL), which checks each point fodominance relationships are defineditive to ¢, rather than
dominance against the entire dataset. Furthermore, thermsut the axes origin. The work in [6] presents techniques for
describe an index (B-tree) based approach, as well as am-exteaching past results to expedite processing of future gsieri
sion of the main memory multidimensional divide and conqu@he multi-source skyline querfg], [3] retrieves the records
algorithm of [20]. Tan et al. [21] introduce techniques, @hi not dominated with respect to a set of exemplar tuples. The
progressively output skyline tuples without having to sti@ reverse skylinef p [4], [12] contains point®’ such thatp is
entire dataset. The work in [22] observes that examiningtgoi in the relative skyline w.r.tp’. Seen from a data-warehouse
according to a monotone (in all attributes) preferencetionc perspective, the work in [31] studies dominance relatigysh
reduces the average number of dominance checks. Basedeyond skylines.
this fact, the authors propose the Sort-first Skyline athori  The work in [32] combines top- with skyline queries,
(SFS), which is similar to BNL but includes a presortingising aggregate R-trees to rank tuples based on the number
step. Several optimizations to the SFS algorithm, e.g.], [2®f records they dominate. The work in [33] deals with the
[24], increase its efficiency. There are attributes, e.gminal, problem that the skyline in high dimensional spaces is too
hierarchical, set-valued, etc., whose values cannot bedsorarge. For this purpose, it relaxes the notion of dominance
from most to least preferred, i.e., a total order on prefezen to k-dominance, so that more points are dominated. The
does not exist. This occurs because certain values canmatst representative skyline operator is proposed in [3dis T
be compared with each other, i.e., preference among thesiects a set of skyline points, so that the number of points
constitutes a (strict) partial order. To handle such aitdb, dominated by at least one of them is maximized.
the work in [25] proposes an algorithm based on a strongerThe notion of probabilistic skyline queries was introduced
notion of dominance, which however causes false positivesin [11] to deal with uncertain databases, where each object
the skyline and requires an additional filtering step. Thekwo(tuple) corresponds to a collection of independent inganc
in [26] identifies the minimal set of preferences that cah®e tAn uncertain object is represented as a minimum bounding box
exclusion of a given point from the skyline. (MBB) that encloses all instances. Dominance relatiorship

Multidimensional (spatial) indexes are used to guide th@mmong objects are probabilistic, as MBBs may overlap each
search for skyline points and prune large parts of the spaogher in one or multiple dimensions. The skyline probaypilit
The Nearest Neighbor (NN) algorithm [27] uses an R-tree tf an object is equal to the probability of its instances
index tuples and performs nearest neighbor search on naot being dominated by any other object. Theskyline
dominated areas. Assuming small values are preferred in @lntains objects with skyline probability abowe Based on
attributes, the basic idea of NN is that the record closesii¢o the aforementioned definitions, the work in [12] adapts the



notion of reverse skyline queries for uncertain objectsthBodepicts the Hasse diagrams of the partial orders correspgpnd
works define probabilistic dominance relationships to tando the defined preferences.

uncertainty in the database. On the other hand this worksdeal We say that a record dominatesanothert’ in context
with uncertainty present in the preference relationshipd, a C;, denoted ast - t'|C;, if t is preferred or equal to

therefore, the techniques of [11], [12] do not apply. t’ in all attribute values and preferred in at least one, i.e.,
Vj t.Aj =a, t'A;|Cit and 3k t.A, =4, t'.Ax|C;. The
I1l. PROBLEM DEFINITION contextual skyline queryCSQ) for contextC;, denoted as

Section llI-A introduces contexts, preferences and the sk§SQD|C;), returns the tuples not dominated by any other
line query. Section I11-B extends the previous definitiongtie in C;. Note that the above definitions are in accordance to
case of uncertainty and formalizes the problem. Sectio 11l existing skyline literature. Conventional skyline querigeed
discusses extraction of uncertain preferences and Seittion not be associated with a specific query context, as all ata#

D presents an example. Table Il contains the frequently usai¢ statically preferred. On the other hand, for dynamidisi&y

notation and its meaning. queries (i.e., when RP attributes exist), past works assume
a query context for which preferences are stated, but do
TABLE Il not explicitly describe it. In this work, we treat all skyéin
NOTATION gueries as contextual, i.e., they are associated with &plat
Sygbol c?aetgf;'gfn situation, which is formally stated as a context.
domC(Aj) don:air: of attributed; B. Probabilistic Contextual Skylines
u>Ajlv\ci SZFUEZ s preferred tov i C, for w, v € dom(A4,) All past works deal with CSQs, where user preferences
CSQD|Cy) | contextual skyline query for all RP attributes are concretely stated along the query.
Prlu >4 v|C;] | probability thatu > 4. v | C; holds . . . . . .
= fuple 7 dominates This section s_hows that it is p053|ble_ 'Fo provide mea_nlngful
Prlt = ¢ [Cq] | probability that tuplet dominatest’ in Cy, results to skyline queries without requiring the user toc#fge
P5E (1) probability that tuplet belongs to the skyline choices. The only requirement is that information regaydin
PLOQPIC,] | brobablst contextual skyine query preferences for other contexts exists. Note that in theradgse
5 e;gf i inﬁze of aR-red;, its lower and upper comer of such_data, other users’ preferences can be used instead. L
plel, t) expected probability that’'s tuples dominate the profile of a user refer to the set of contextual preferences
specified/collected in the past. The goal of this work can be
A. Contextual Skylines roughly stated as: given the current cont€stand the user’s

Consider a relatiorD with attributes A; ... A,. A con- profile, determine the non-dominated tuplesGp. To solve
text C' is a particular situation or state associated with tHgiS: We identify and formulate two sub-problems discussed

user/query, and is represented as a set of parameter-\ailge ﬁhe following. L )
[9], [10]. For example, contexe’ of Table | is expressed When the current situation perfectly matches with only one

as {Purpose=Business, Period=Jinave denote attributes of the contexts included in the profile, the problem natyrall
for which preferences are explicitly defined with respect tduces to a contextual skylme_qgery. Interesting chgéien
a context asrelatively preferred(RP). On the other hand, &M1S€ whenC, is not in the profile; what should the user’s

attributes for which preferences are fixed and independé’ﬁ?ferenceS be in this case? Siricepreferences are missing,

of contexts are calledtatically preferred(SP). Referring to 1€ systemh_ hhas to_llnterpolatg them basedl on the profile, a
Figure 1(a), Price and Distance are SP, since lower valies gfocess which entails uncertainty. We model uncertainitygus

always better, whereas Amenity is an RP attribute. probabilities. For context; and two values:, v € dom(4;),
A preferenceapplies to a specific attributd; and has the an uncertain contextual preferencstates predisposition of

form u >4 v, wherew,v € dom(A,). This implies that * OV€r that holds with probabilityPr{u >, v|C;]. In
it for tupleé it holds that £. A 7 uw t'' A — v and the absence of uncertainty, the probability is either 0 or 1.
’ Ly = y LA =

t.A, = t'. Ay, for all k # j, thent is preferred tot’. For RP Similar to concrete preferences, we .do not allow conflicts.
attributes, preferences acentextual i.e., they only hold for This translates to the following condition for any two vedue

a specific contexC;, and are denoted as =4, v|C;. Since " 7 v € dom(d)), Priu =4, v|Gi] < 1= Priv -4,
preferences for SP attributes hold for all contexts, we yunif* | Ci]; the inequality accounts for the p053|b|l!ty thaty are
notation usingu = 4, v | C; for any RP or SPA;. Continuing mcompa_rable. We_are now ready to state the first sub-prgblem
our example, the user has specified preferedces, G | Cq, further discussed in Section 1iI-C.

I =4 P|Cy, I =4 S|C1, G =4 P|Cy, G =4 S|Ch, Problem 1 [Uncertain Preferences Extraction] Based on
regarding the Amenity attribute (abbreviatedAisfor context ~ the user’s profile, derive a set of uncertain preferences for
C,. We assume that preferences for a particular confgxt the current context’,.

and attribute4; are non-conflicting, i.e., for any two values 1o uncertainty associated with preferences leadsiter-

u # v & dom(Ay), u =a; v[Cy andv =4, u[C; canot  4in gominance relationshipgssuming independence among
simultaneously hold. This means that the set of preferences

for A; in contextC; defines a (strict) partial order; Table | 1The shorthand: = 4 v stands foru = 4v V u = v.



attribute preferences, the probability that tupldominatest’ occurrences in the contexts, and with the similarity of éos

in the contextC; is contexts toC,. For each pair ofs, v € dom(4;), we define:
-P’I‘[t.A* tAﬁIA|Cl] if t £t Zj (Sim(ctbcj)"u >_A7:U|Cj|)
Prit=t|C; = I I =4 J ’ Prius=a,v|Cy] = - , (3
al | Ci] {07 if ¢ =1, (w4, v]Cy) > sim(Cq, Cj) ®)
(1) here|u >4, v|Cj| is 1 if such a preference exists, and 0

where the first case applies only when tuples do not have t
same values in all attributes. It is important to note thé th
definition reduces to the conventional notion of dominan%ao
when all preferences are certain, i.e., the probability i 1
t > t'|C; and 0 otherwise. This holds because the conditi
Vjt.Aj =a,t'.A; | C; suffices for a tuple to dominatet’ # ¢.

erwise.

Equation 3 has the following properties, far,v €

m(A;). WhenC, matches exactly oné€’;, the probability
Priu >4, v|Cylis 1 if u >4, v|C; holds, 0 otherwise.
Whenu > v in all contexts, Prf =4, v|C,] is 1. Finally,

Based th . di . daot the d since there is no conflict in the input preferences, the ddriv
ased on Ine previous discussion, we now adapt the Kcertain preferences are non-conflicting, i.e., it holalst t

nition of skyline queries. Intuitively, a tuple is in the dine <q_
when it is not dominated; since dominance is uncertain, thlljsr[u ma 0 Col S 1= Priv-au| Cql.
is a probabilistic event. Thekyline probabilityof a tuplet is D. A Concrete Example

defined as We demonstrate the definitions presented in the previous
Pscki (t) = H (1—Prlt’ = t|Cy). @) s_e_cti_ons, using the e>_<amp|e of Section I. Consider a proba-
Y brivs bilistic contextual skyline query that requests the tupléth

o skyline probability above 1/2.

In accordance to the deterministic case, when all pref«elsian&‘:> . L

O I e A4 e g : : roblem 1 First, we assess the similarity of contexdy,
are certainP;: (t) is 1 if ¢ is not dominated and 0 otherW|se.C C- 10 the query context. shown in Table 1. Assum-
We now state the second sub-problem. 2, C3 10 e query d . Co

ing similarities among parameter valusisnp,mposd Business,

Problem 2 [Probabilistic Contextual Skyline Query  Vacation = 0, simperiodJUne, Summeér= 1/3, we obtain
(p-CSQ)] Given a database and a set of uncertain prefersim(C,,C1) = 1/3, sim(C,,C2) = 0 and sim(C,,C3) =
ences, return the tuplésvhose skyline probability is above 1. Then, based on Equation 3, we compute the uncertain
a threshold, i.e.t € p-CSQD|C;) < ng;(t) > p. preferences depicted on Table IlI; the number inside a cell
is the probability that the value corresponding to the row is

We introduce efficient algorithms for Problem 2 in Sec- ; .
tions 1V, V, but first we elaborate on Problem 1 and preseﬁ{eferred over the value in the COIumnigogsgder vallies,
P or example; we havé’r[I =, P|C,| = #3550 — 1/4 and

a concrete example. 1+0+1/3

_ . Pr[P=41|Cq] = 1%&}3 = 3/4.
C. Extracting Uncertain Preferences

TABLE Il

This section presents a simple interpretation and solution
PREFERENCE PROBABILITIESPr|u > 4 v | Cq] BASED ONTABLE |

to Problem 1; although others could apply, examining them is

beyond the scope of this paper. -
Initially, we define a measure of context similarity. Assume N

elr]s]

that for each context parametéf;, there exists a function I — | w4 | ua| 14
simy, that assesses the similarity between two values of G o | — | wal va
its domain dom(X;). This function takes values if0, 1], P 2l aa | — | 1a
where higher ones express greater similarity. Dependirth®n S 32 a3l o | —

domain type, different functions apply. For numerical dama
simy, (a,b) = 1— 122 where)M (im) is the maximum (mini- Problem 2 To obtain the probabilistic contextual skyline, we
mum) value indom(X;). For categorical/hierarchical domainsneed to compute the uncertain dominance relationships @mon
simy, (a,b) = Wm i.e., the Jaccard coefficient,the tuples shown in Figure 1(a). The respective dominance
wherelvs(a) denotes the set of leaves underFor nominal probabilities are depicted in Table 1V; the number inside a
domainssimy;,(a,b) = 1 whena = b, 0 otherwise. Based oncell is the probability that the tuple corresponding to the
these functions, we define similarity between contéXt€’ row dominates the one in the column. Consider hdigl
assim(C,C") = [[,simy, (c.X;, ¢'.X;). Note that a context Figure 1(a) shows thdt, does not dominaté; with respect
parameter value not specified completely matches any vatoethe statically preferred attributes. It follows that can
from the same domain. only have 0 probability of dominatings when all attributes
We apply the previous definitions to compute the similaritgre considered. Figure 1(a) also shows thatdominates
of current contextC, to all contexts present in the user'sh, ho, hs on the SP attributes. Sincks’s amenity value
profile, and use them to extract the uncertain preferencés.is preferred with 1/4 probability toh,’s P, we obtain
Intuitively, we require a value: to be preferred ovep in  Prihy = h1|Cy] = 1-1-1/4 = 1/4. Similarly, Prihs >
C, with a probability that increases with the numberof v ho |Cy] =1-1-1/4 = 1/4 becauselr[G -4 5| Cy] = 1/4.




On the other hand( is not preferred overl and hence, demonstrated by the dashed arrows in Figures 2(c) and 2(d).
Prlhy = h3|Cql =1-1-0=0. Finally, hy cannot dominate Based on this example, no (partial) order from more to less
itself according to Equation 1. preferred values exists, when preferences are uncertain.

TABLE IV

DOMINANCE PROBABILITIES Pr[t’ > t|Cy] FORFIGURE1(A) IS/y@> 0 3/4 @\O
] O_® O_®

t

h1 ho h3 ha

1/4 3/4
hy 0| 0| 3] o0]o0
ha ol o|3a|lo]o @ (b)
hs 0] o 0 0] o
ha a4 | U4 | o 0] o 14 @\\1 1/4// @ 1
hs ol o] o | oo @ é
Cq @\ - -— @
O i 4
The final step involves computing the skyline probability (c) (d)

for each tuple. Let us consider hotgk. Table IV shows Fi o .

. . . . ig. 2. Intransitivity and non-monotonicity; preferredopability decreases
thaths has a non-negative prObab"'% of being dominated by), increases (b); not-preferred probability decreasgsincreases (d)
only hy, ho. Equation 2 implies that’;, % (hs) = (1 — 3/4) - o o
(1-3/4)-1-1 = 1/16. In a similar manner, the skyline The lack of transitivity and monotonicity, suggests that
probabilities for all hotels, shown in the last row of Tablg | & Sort-based algorithm (e.g., like SFS) does not exist for
are computed. Therefore, hotéls, ho, hu, hy are the result to p-CSQs. In the following, we present a baseline solution

0.5-CSQD|C,). termed Basic Iterative Algorithm (BIA). Assuming, tuplesa
stored in consecutive disk blocks, the main idea of BIA is to
V. NON-INDEXED ALGORITHMS compute the skyline probability for each tuple by scanning

the entire dataset in a block nested loops paradigm. More
sgecifically, letM, N denote the available memory and dataset
size, respectively, measured in disk blocks. BIA partisioime
idataset into;=y batches of\/ —1 blocks and examines them

in sequence. For each batch, BIA loads it into memory and
repeats the following procedure.

A. Basic Iterative Algorithm Blé initializes the skyline probability of each batch tuple

to Py (t) = 1. Then, it scans the entire database loading one
tonic order from more to less preferred attribute valuebeei block /at a time N memory. For each tupién the batch an_q
explicitly, e.g., by pre-sorting [21], [22], [23], [11], @, eachf in the retrieved block, B[A computes the _p_robgblllty
or implicitly, e.g., using a heap [27], [2], [12], [7]. Notethgzt domlncaqtest and updz/ateSs skyline probablhtg,q ie.,
that even when tuples are uncertain, such an order exist{; oy (8) = Py (8) - (_1 e t'.CQ])' As soon asP,y; (1)

one considers the minimum bounding box of each reco domigglri\:lé tz;}eiizlrel? :;Ireijhp?i"Sine)f[ﬁlsdsgr:é?? ;‘;:(t:?]erare
[11], [12]. Due to the transitivity property of the dominanc eliminated, BIA continues with the next. On the other hand,

relationship §; > t2,t2 > t3 = t; > t3), @ monotonic order - X . L

reduces the average number of dominance checks and all(gwge the (intl_re da:jtabalse IS scatr)med,;hehskylﬁln?dproléﬁ)dﬁr

progressive output of results. the non-e |m|nat.e. tuples are above the threshold and4edli
hence, all remaining batch tuples are returned.

In the following, we demonstrate that transitivity and meno it iahtt d hat the Basic | Ve Aldan
tonicity do not hold in the case of uncertain preferences and Lis straightforward to see that the Basic lterative Algum

thus neither in dominance relationships. Consider the rigice answers2probabilistic contextual sky_line queries cotyagtth
preferences in Table Ill among valués I, P for a given anO (%) worst case I/O complexity.

contextC,. Value S is preferred to/ with probability 3/4
and I to P with 1/4, as shown in Figure 2(a). If transitivity
held, we would expecS to be preferred ove” (the grey  This section presents two preprocessing steps that signifi-
arrow in Figure 2(a)) with some probability, e.g3/16. cantly reduce the necessary pairwise dominance checks. Let
However, Pr[S =4 P|C,y] = 0, i.e., the probability is less {G;} denote the set of relations that correspond to a group-by
than expected. Similarly, whilePr[S =4 P|C,] = 0 and RP attributes statement on the dateBetafter projecting on
Pr[P =41|Cy] =3/4, we getPr[S -41|Cy] =3/4,i.e., the SPs. Therefore, ead contains tuples for a particular
more than expected, as shown in Figure 2(b). Similar resultalue combination of the relative preferred attributes. aks
hold for the not-preferred probability — Pr[- =4 -|C,], as example, consider the dataset of Figure 1. There is a single

This section discusses algorithms for answerir@SQs
that do not use index structures. Section IV-A presents
straightforward method similar to the BNL algorithm [1]
whereas Section IV-B makes various useful observations t
increase efficiency.

The majority of skyline algorithms visit tuples in a mono

B. Candidate Selection Algorithm



SP with four distinct values, and hence four groups exi§t We emphasize that, similar to BIA, CSA needs to scan the
Gr = {hs,hs}, Gs = {ha}, Gp = {h}, Go = {ha}. Let entire database (and not ju3tfor each batch, as tuples outside
CSQG;) be the skyline (on the SP attributes) of tuplegjin C can dominate those ifi with non-zero probability. Note that
the following holds. when all candidate skyline points fit in main memory, the I/O
Lemma 1:For any probability threshold > 0 and context cost of CSA become®(N).
Co, p-CSQD|Cq) < Uz CsSQyi).
Proof: We prove by contradiction. Assume that a tuple V. INDEX-BASED ALGORITHMS
t exists such that € p-CSQD|C,) butt & | J,CSQG;), for This section discusses methods fe€SQs that utilize index
somep and C,. Further, letG; be the group that belongs structures. Unlike the boolean case of conventional skglin
to. Sincet ¢ CSQGx), there exists another tuplg € G, (is tuple t dominated?), ap-CSQ needs to find ouhow
such thatt’ dominateg with respect to the SP attributes, i.e.manytuples, andvith what probability dominatet. Therefore,
t' ~-gp t. Sincet,t’ are in the same group, they have equalll three algorithms discussed below employ index strastur
values in all RP attributes, and thus dominatest in any with aggregate information. We note that the index struesur
context, i.e.,Pr[t’ = t|Cq] = 1. As a resultPsi‘;(t) =0 and described in the following are built independent of the entr
t ¢ p-CSQD|C,), a contradiction. B context and its preferences and thus remain valid for all
Returning to our example, no tuple can be eliminated @®ssiblep-CSQs.
they all belong to their respective group skyline. ) _
Lemma 2:For any probability thresholg and context”,, A- Basic Group Counting
if for a tuplet € CSQJ, ;) there exists n@’ € D such that  The Basic Group Counting (BGC) algorithm depends on
t,t’ have equal SP attribute values, thea p-CSQD|Cy). two key ideas. The first is to decouple SP and RP domi-
Proof: Consider a tuple such thatt € CSQJ, ;) nance, which is possible due to the distributive property of
and there is nd@’ € D such thatt, ¢’ have equal SP attribute Equation 1. This implies that for a tupké to dominatet
values. Note that the first condition implies thatoelongs with non-zero probabilityt’, ¢t should be distinct (i.e., with
to the skyline of the entire dataset with respect to the Sfifferent attribute values) and, furthet, should dominate
attributes. We will argue that for al* # ¢t € D we have with respect to the statically preferred attributes. Theose
Prit* = t|C,] = 0. Assume otherwise; then & must be is the observation that all tuplgs that belong to groug;
preferred (with non-zero probability) or be equal#tan all have the same probability of dominatingv.r.t. the relatively
attributes. However, this cannot hold for the SP attrituf@s preferred attributes. Combining the two, BGC'’s goal is to
there is no tuple with equal SP values (dug’®ouniqueness count the number of tuples that dominatew.r.t. the SP
property), and (i) no tuple is preferredtan the SPs (becauseattributes, for each grou@;.
t is in the skyline w.r.t. SPs). The assumption is wrong and To obtain quick counts per group, BGC builds a COUNT
Pr[t* = t[Cy] = 0 holds for allt* # t € D. Therefore, aggregate R-tree (aR-tree) to index tuples that belongéeo th
Equation 2 givesPrSC,jy(t) = 1, which implies thatt is in same group. Similar to an R-tree, the structure groups suple
p-CSQD|C,) for anyp, C,. B together and assigns them into leaf nodes. Then, the minimum
In the example depicted in Figure 1(b), tupfes ks are in  bounding boxes (MBBs) of non-leaf nodes are hierarchically
the skyline w.r.t. the SP attributes. Hence, they belondé tgrouped together to produce higher level nodes, according t
skyline for anyp-CSQ, as shown in Tables | and IV. a maximum capacity. An aR-tree node contains entries of
Note that the skyline of the union of groups is the sam@e form (e;, MBB;, c;) for its children nodesN;; e; is a
as the skyline computed over the union of the group skylinminter toN;, MBB; is the N;'s MBB and¢; is the aggregate
points, i.e., CSQJ, ;) = CSQ(U,CSQY;)). Therefore, information, i.e., the number of tuples located at the sebtr
CsQU, Gi) € U; CSQG;). In other words, among the set ofrooted atN;. In the following, MBB; is represented by its
candidates of Lemma 1, Lemma 2 identifies those tuples thawer ¢, and upper cornee;. Figure 3 shows an aR-tree
are definitely in the result set of any probabilistic contet with node capacity 3 for a group of 12 tuples. In particular,
skyline query and can be immediately returned. It is impurtaFigure 3(a) draws the MBBs, Figure 3(b) zooms in on nade
to note that the skyline within each group C&%) depends displaying the lower and upper corner points, and Figurg 3(c
only on the (static) preferences on the SP attributes, amsl tishows the structure of the node entries.
is the same for any query. Therefore, both lemmas can be usefollowing the discussion of Section IV-B, BGC calculates
as a preprocessing step. the skyline probability only for the candidate tuples. Ntitat
The Candidate Selection Algorithm (CSA) uses the aboviee group skylines, used to extract the candidateCsatan
results to expedite query processing. Cetlenote the set of be computed using the BBS method [2] on the aR-trees (the
candidate tuples, i.e., all tuplesin | J; CSQJ;) excluding aggregate information is simply ignored). In the followjnge
those identified by Lemma 2 to ha\IérS;’y(t) = 1. CSA is fix a tuplet € C and letG; be the group that belongs to. We
identical to BIA except for the batch creation process.dadt use the notatio-sp (>-rp) to indicate dominance w.r.t. the SP
of partitioning the entire database, CSA softsusing the (RP) attributes; the corresponding probabilities are amtexb
Hilbert curve and patrtitions it into batches that fit in maity Equation 1, when iterating only through the SP (RP)
memory. CSA then calculates the probability of each tuple i;s. Without loss of generality, SP attributes are numerical



Basic/Super Group Counting
Input: C, p, Cq, aR-trees{T;}
Output: S the answer t@-CSQD|Cy)
Variables: # a minheap with entriege, p(e, t)) and keyp(e, t)
1 begin
2 S =9
o 3 foreach ¢t € C do
Na 4 Prie () =1
t 5 foreach T; do ) )
p s 6 p(eR) := ComputeProb (e%, t, Cq) I/ for the root e of T;
e 7 enheap(ey,, p(ey, t))
. C,
(a) aR-tree MBBs (b) node Ny 8 while 74 not empty andPr g%, (t) > p do
9 deheap(el, p(e!, £))
R 10 if et —sptthen

=
Ns
SAeo? EEZm

=
[

C C i
| Proty(t) = Prty (0 - pled, 1)
else ) )
foreach child e;, of e’ do

[ay
N

B
AW

if e, =sptthen _
Na ¥ N Ne N, 15 \‘ L plel,t) = CorinputeProb (eh, t, Cq)
[l ] [oluTe] [o[v] ] [el6lt] [l ] *° eoneap(ch p(ek: )
(c) aR-tree structure 17 if _Prgf(y(t) > p then
. 18 | insertt in S
Fig. 3. Aggregate R-tree example L
19 return S

and small values are more preferred. Furthermore, we woiteend
Pr(Gy =rpG: | C4] to denote the probabilityr[t ~grpt | Cy]
that any tuplet’ € G RP dominates any € G;.

A straightforward implementation of BGC computés i.e., the one with the minimum key (Line 9). H;s upper
skyline probability visiting all aR-trees in sequencetially corner dominates w.r.t. the SP attributes (Line 10), then all
Pr;:;?cy(t) = 1. For each aR-tre&;, which contains tuples from records within it dominate. In this case, the expected proba-
groupg;, a range-count query is issued to obtain the numbikitity value p(e}, ) is exact and thuss skyline probability is
n; of tuples that dominateé w.r.t. SP. The shaded region inupdated by that quantity (Line 11). Otherwise, BGC needs to
Figure 3(a) corresponds to such a range query; after tiagersretrieve the nodej- and examine its children (Lines 13-16).
nodesR, N, and Ny, the correct answer 3 is computed énd A heap entry for child node}, is created only if it contains
two tuples insideVs). Then,t's skyline probability is updated a tuple that can dominatg, i.e., if e;'.’s lower corner SP
Prt, (t) := Prg, (t) - (1 = PriG; =rpG: | Cy))™ dominatest (Line 14). Then, node’'s expected dominance

While the above procedure is correct, it may incur unnecgsrobability is calculated (Line 15) and the appropriatenent
sary 1/Os for a tuplé that does not satisfy the CSQ. In these in enheaped (Line 16).
cases, it is crucial to quickly disqualify. Therefore, BGC  The final issue that remains is the computatiorpf, t),
visits nodes, across aR-trees, in an order that increases itb., the expected probability by which a nodelominatest.
chances of reaching a skyline probability below the thresholdgach tuplet’ of e that dominateg w.r.t. the SPs contributes
We note that this effects only the visit order of BGC and ndly 1 — Pr[G. =rp G:|C,] to t's skyline probability. The
the set of visited nodes. guestion is how many such tuples exist. Given only the

The BGC algorithm, shown in Figure 4, repeats the follownode’s MBB, and assuming uniformity within the node, it is
ing procedure for each candidate tugleBGC maintains a reasonable to assume that the number of dominating tuples
minheap# with entries (e}, p(e}, t)), wheree; corresponds is analogous to the volume of the space they can exist in.
to a node in the aR-tred; and p(e}, ) is the key of , Figure 3(b) shows an example for tupteand nodeNy;
which portrays the contribution of node§ to t's skyline any tuple in the shaded region can dominateLet p =

probability. In particularp(e}, t) is the expected probability [T, max min{tﬁ_’l{:if—k.;emkvo be the volume fraction of

that tuples inej dominatet; we discuss its computationthe dominating space. Then, there arec expected tuples
(function ComputeProb in Figure 5) in the sequel. Initially, \yithin the space, where is the node’s count. Therefore, the
the skyline probability oft is set to 1 (Line 4), and an e”tryexpected probability ig(e, t) = (1 — Pr(G. =rpGe | Cy])",

(ek, p(eR, 1)) is created and enheaped for the root neffef a5 computed by functioGomputeProb shown in Figure 5.
each treel; (Lines 5-75.

The algorithm proceeds (Lines 8-16) examining entrigs Super Group Counting
until either the heap is depleted, in which case inserted in
the result set (Lines 17-18), or the skyline probability po
below the threshold. Lete’, p(e},t)) be the deheaped entry,

Fig. 4. BGC/SGC Algorithm

The BGC algorithm’s performance degrades as the number
of groups increases. When the number of tuples per aR-
trees decreases, the space becomes sparse and nodes occup

2To avoid blowing up heap space when the number of aR-treearge, |arger volumes. Therefore, it becomes less likely for anrent
we examine aR-trees in batches instead of concurrently. node to dominate, which means fewer subtree prunings.



ComputeProb
Input: e, t, C,

Therefore, BCA needs to make sure th&t children do not

contribute tot's skyline probability, as their contribution has

Output: p(e, t) the expected],, ., (1 — Pr[t’ > t])

Variables: ¢ the count associated with entey already been accounted for. A straightforward approachdvou
g: he Sroun gfft’t“p'es contained i be to explicitly associate each nodevith the set of tuples to

_ p the fraction ofe volume that dominates w.r.t. SP examine. However, even if compressed bitmaps (e.g., Bloom
; beg'"p:: . filters) are used, the space overhead is large. BCA takes a
3 foreach SP attribute A, do different direction. It associates with each nadethe upper
4 L pi=p-max { mi““ﬁ’gijgi‘;““k ,o} corner of its pareni™. If b+ SP dominates a tuple e’s parent
5 plet) := (1 — Pr(Ge =rpGt | Cg])*"* completelly S_P dominatégs Thus,e is not considered fot, as
(75 J return p(e, t) the contribution of alle’s tuples has been accounted for.

Batch Counting Algorithm

. . _Input: C, p, C,, aR-trees{T;
To address this issue we propose the Super Group Countlng,ﬁtput: Sptheqanswer [écsap‘cq)

(SGC) algorithm, which assigns groups to supergroups andvariables: # a minheap with entriege, b*) and key MINDISTE)
builds a modified aR-tree per supergroup. e .
Since an aR-tree contains tuples from different groups, tlie | foreacht € 5 do
aggregate information stored must be properly adapted. The L Préiey =1
entry for a nodeV; has the formle;, MBB;, c;]), wherec;[Jis foreach T; do

. enheap(e,, etF) Il for the root e, of T;
n arr ntaining the number of tupl n r h L mR ‘
an array containing the number of tuples benesifHor eac while 3 and § not empiydo

Fig. 5. ComputeProb Function for BGC

group; i.e.,c;[j] corresponds to the count fe¥; tuples. The 4 deheap(e! , b*)
SGC algorithm operates exactly like BGC (Figure 4). Hows® foreach ¢ € 5 do .
ever, theComputeProb function changes considering count¥’ foej” »sptandb® ysot then
for multiple groups (Figure 6) 1 p(ej, t) := ComputeProb (¢, t, Cy)
ple g P 9 ’ 12 PTS?{CY (t) := Prgjy (¢) - p(e;7 t)
13 if Prgiy (t) < pthen
ComputeProb 14 | removet from S

Input: e, t, Cy e

Output: p(e, t) the expected [,/ .. (1 — Pr[t’ > t]) 15 else ife;” »spt then

Variables: c[] the count array associated with entry 16 foreach child e}, of e} do »

égjtﬁ ;Ztio%rgtggts of tuples contained in 17 if e, -sptand (i;;., ei) not in A then
t , 7 k3
p the fraction ofe volume that dominates w.r.t. SP 18 |— enheap(ej, € )
1 begin -
2 p:=1 L
3 foreach SP attribute A, do 19 return S
L p::p.max{min{t.ik,e*’.AE}—efAk.’0} 20 end
4 etAy—e—Ay . .
5 () =1 Fig. 7. BCA Algorithm
p(e, t) :=
6 | foreachgroupG; 7 Gy do o The pseudocode for BCA is given in Figure 7. Similar to
7 L ple,t) i=ple,t) - (1= Pr(G; =rpGs | Cy))” el . . :
8 retum p(e, £ BGC and SGC, BCA uses a minhe&pwith entries for nodes
67 . y

9 end b that may belong to different aR-trees. Note that BCA's heap

entries have the fornke, b*) and are sorted by MINDIS'E],
wheree is an aR-tree node arid™ is the upper corner of's
C. Batch Counting Algorithm parent. Initially the skyline probability of each candida set

The previous methods share a disadvantage: they exanid (Lines 3—4) and an entrie},, e;7) is enheaped for each
aR-tree nodes multiple times, one for each tuple. The Batt®Pt node (Lines 5-6). Since the root has no parent, its own
Counting Algorithm (BCA) offers a more efficient approactPPer cornee}; is used as thé™ point.
that processes multiple records concurrently. We assuate th BCA proceeds iteratively until either the heap is depleted o
all candidate tuples fit in main memory; otherwise, BCAhere is no candidate tuple left (Lines 7-18). Ke}, ™) be
partitions the set of candidates into batches, similar té&,csthe entry with the minimum MINDIST (Line 8). All remaining
and proceeds for each batch independently. Note that siff@didate skyline tuples are examined in sequencepenote
BCA can use either an aR-tree per group or super group, W current. Ife;” SP dominates and b* does not (Line
do not distinct between the two options. 10), then all tuples beneatt) should contribute ta’s skyline

Examining tuples in batch introduces additional challengeProbability as they have not been considerect]jis parent.
Consider tupleg,t’ and lete be the aR-tree node currentIyThus,PrS}(Y(t) is properly updated (Lines 11-12); if it drops
under examination. Assume that the node’s upper caetier below the thresholdt is disqualified fromS (Lines 13-14).
SP dominateg but nott/, i.e., only e~ SP dominateg’. When onlye;'-’s lower corner SP dominates(Line 15-18),
BCA updates the skyline probability far (using theCom- the node’s childrer;, are examined in turn (Lines 16-18). If
puteProb function). Note that the subtree rootedeatannot ei's lower corner SP dominatesthen the entry<e§€,e§.+) is
be disregarded, because it contains tuples that SP donminatenheaped only if it is not already i® (Lines 17-18). The

Fig. 6. ComputeProb Function for SGC



TABLE VI

non eliminated tuples are the answernt@€SQ (Line 20). PARAMETERS AND VALUES

VI. EXPERIMENTAL STUDY

. . . Parameter Range
In this section, we evaluate the proposed methods using sy pata cardinality V) 100K, 500K, IM, 5M, 10M
thetically generated data, assuming the preference piliitesb SP dimensionality ds ) 2.3, 4
for the current context have been extracted. The examined RP dimensionality dzr) 12
algorithms along with their acronyms and the section they RP domain size[RP]) 8, 16,32, 64, 128
are discussed in are shown in Table V. All techniques werg SrOUPS per super groupsf|) 1,4,8 16, 32
implemented in C++, compiled with gcc and executed on Probability threshold() 01,03050709

2Ghz Intel Core 2 Duo CPU. The page block size is 4096

bytgs, and each random I/O costs 10 msecs. A memory buﬁerConsider Figure 8; all methods incur higher 1/O costs, since
equivalent to 100 pages (410 Kbytes) was allotied to a%le number of blocks occupied by the dataset increases with
algorithms. CSA and BCA use this buffer to process candid P y

wples in batches. On the other hand, since SGC processedséaThe naive block nested loops variant BIA has a quadratic

single candidate at each iteration, the buffer is used tbeac pendenc_e oV and thus quickly becomes infeasible for
aR-tree nodes. datasets with more than 500 thousand tuples. On the other

hand, all other methods examine only candidate skylinetpoin

TABLE V (following the lemmas of Section IV-B) and scale almost
PROPOSED ALGORITHMS linearly. In fact, when all candidates fit in memory, the non-
AGor . indexed method CSA has exactly linear dependencé/cas
gorithm Acronym | Section . .
Basic Tterative Algorithm BIA VA it scans once over the entire database.

Candidate Selection Algorithin  CSA VB Figure 8(a) shows that CSA, SGC, BCA have over two

Super Group Counting SGC |V-A, V-B orders of magnitude improvement over BIA on 500K tuples for
Batch Counting Algorithm BCA V-C the Independent dataset. Among the three, the aR-tree based

algorithms SGC, BCA are significantly more efficient, exhibi
We use a publicly available generatéo construct synthetic ing around an order of magnitude less 1/Os for the largest
datasets. We distinguish two classes based on the dismributdataset; 43,123 and 20,741, respectively, versus 250/Q30 |
of the statically preferred attributes. In Independent, &P for CSA. Regarding SGC and BCA, the latter incurs on
tribute values are drawn from a uniformly random distribati average 2 times less I/Os in all but the smallest dataset.
In Anti-correlated, tuples with preferable SP values in orfeigure 8(b) shows similar trends for BIA, CSA, BCA. Note,
dimension are more likely to have non preferable valuesén thowever, that the performance of SGC degrades for the Anti-
others, e.g., hotels closer to the city center are more estyn correlated dataset, as there are many more candidate eskylin
The size of SP domain is set to 10000, whereas that of Riples. Recall that SGC'’s I/O complexity critically depsnd
varies from 8 up to 128 values. The cardinality of the datasen the size oC, since it has to traverse the aR-trees once per
N varies from 100K up to 10M points. The number of SRandidate.
and RP attributes islsp = {2,3,4} and drp = {1,2},
respectively. Each tuple has a fixed size of 100 bytes. ThE&*® BIA —a— 10000 BIA 4
A . . . CSA —8— SGC —x—
preference probabilities are provided as input to the #lgyos « 100

1000 CSA —=—
. BCA —6—
for each tested scenario. |

For the index-based methods, we investigate the effectgof

super groups and vargg|, the number of groups assigned to

each super group, from 1 up to 32. Note that whey} = 1 v — vy S ——— vy
SGC reduces to BGC. The examined probability threshold Dataset cardinality (N) Dataset cardinality (N)
values p for the p-CSQ range from 0.1 to 0.9. In each

experimental setup, we vary a single parameter while sgttin
the remaining to their default values. Table VI displays the
parameters under investigation and their correspondimgesy ~~ Figure 9 plots the CPU processing cost for all methods
default values are shown bold. as N increases. The non-indexed methods, BIA and CSA,

Scalability vs. Dataset Cardinality In the first set of exper- scale similarly to Figure 8. On the other hand, SGC has little

iments we investigate the performance of all methods wiﬁ{gcreiss'ntgtr?bvet”:je?nd’i\glhetrezsci?p; 'f veLy CPUIr']nttﬁnSd“é?' The
respect to the dataset cardinality. In particular, we vary atter 1s attributed mainly to S large heap. € defau

io, the maximum heap size for BCA is 6,036 entries
from 100K up to 10M tuples and measure the number % enario, . . ' .
/O operations, the time spent on CPU and the total que 0 Kbytes), whereas for SGC is 57 entries (0.4 Kbytes). This

processing time. The results are depicted in Figures 8, 9 a urs because in BCA, an aR-tr_ee node is enheaped when it
10, respectively. dominatesat least onecandidate, i.e., a very frequent event.

Furthermore, a deheaped entfy,b*) requires dominance
3http://randdataset.projects.postgresql.org checks against every candidate foras well asb™. Hence

SGC —x—
BCA —o—

t (x1

i®

100

1/0 cost (x103)
=
o
o

i

10

(a) Independent (b) Anti-correlated

Fig. 8. 1/O cost vs.N



a heap entry incurs aroungl- |S| checks, whereS is the 10000 10000
current candidate set. In the Anti-correlated dataset shiow o . Z 1000
Figure 9(b), tuples are harder to dominate each other and the &+ = i Y .W!
. . £
number of dominance checks and the required CPU cycfes™ %/’9/ £ 100 o
increases. Therefore, the required CPU time of all metho&s 10 csA —m— 1 £ 10 SGC —x%—
BCA —6— CSA —=—
grows. 1 SGC —x— i BCA —o—
8 16 32 64 128 8 16 32 64 128
RP Domain Size (|RF) RP Domain Size (|RP)

BIA —a— 1000

1000 | o 1 (a) Independent (b) Anti-correlated
100 /ngé v | / //eﬁ Fig. 11. Total time vs|RP|
:////
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o
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M be quickly disqualified. This is the trend exhibited by SGd an
1 M ! BlA —2—BCA —o— BCA in both distributions. Regarding CSA, however, notd tha

CSA —8—SGC —x—

100K 500K 1M 5M 10M 100K 500K 1M 5M 10M when there exists even one candidate tuple such that it gglon
Pataset cardinality (N) Dataset cardinality (N) in the skyline, CSA needs to scan the entire dataset. This is
(a) Independent (b) Anti-correlated the case with all scenarios examined in Figure 12. As a result

Fig. 9. CPU time vsN only CSA's CPU time can decrease, which accounts for its

. . ) marginal total time decrement asincreases.
Figure 10 draws the total processing time (CPU and I/O

cost) as the dataset cardinality increases. Notice thahgmo
the two individual costs, the required number of I/Os is thow 1000

dominating factor. Figure 10(a) shows that the index-basgd | I

algorithms are significantly faster than CSA following the

trends of Figure 8(a). Similarly, Figure 10(b) exhibits thé 100 M

%i

=
o
o

Total time (sec)

trends of Figure 8(b) for Anti-correlated datasets. BCAfs U™ |Soe % —
. . BCA —6— BCA —6—
to 6.4 and 8.7 times faster than CSA and SGC, respectively. 10 = ———————— 10 "= ———————
Probability Threshold (p) Probability Threshold (p)
10000 10000 (a) Independent (b) Anti-correlated
= = Fig. 12. Total time vs
8 1000 | /'/. & 1000 /./. g P
£ g Scalability vs. dimensionality Figure 13 examines the effect
g 0o WSGC g w0 Sc%lg —a of d|mens_|onallty m_total processing time. When the number
—a— —x— —a—
o N se¢ N csa of SP attrlbutesisp increases, the number of ca_nd|daf[e (|._e.,
100K 500K 1M 5M 10M 100K 500K 1M 5M 10M local skyline) tuples grows due to the curse of dimensityali
Dataset cardinality (N) Dataset cardinality (N) However, whendgp increases the candidates multiply at a
(a) Independent (b) Anti-correlated higher rate, since the number of groups rises exponentially
Fig. 10. Total time vs.N SGC is mostly affected because of its sensitivity in the

) ] _ number of candidates. This is demonstrated in Figure 13,
In _what follows, we exclude the naive Basic Iterativgynere although SGC is the most efficient method in low
Algorithm from the figures. dimensionality, it quickly becomes impractical for moreuh
Scalability vs. RP attributes domain sizeFigure 11 plots four dimensions. On the other hand, CSA and BCA achieve
the total processing time as a function of the domain sizeasonable execution times even for large dimensioralitie
of the RP attributes. The cost for the non-indexed approach

CSA remains largely unaffected by the increase|RP|. 10000 10000
i i i ché ] scéé |
This occurs, because even though the candidate skylinestupl,,, 53¢ = 1000 158G o

increase with|RP|, they can still fit in main memory. Thus, £
CSA still performs only a single linear scan on the databas%.
On the other hand, BCA performs more /O operations and *°
CPU cycles a$RP| increases, since the increased number of *
candidate skylines leads to more entries being inserted!iat

heap. As discussed in the context of Figure 8(b), SGC is very
sensitive to larg€ sizes, which leads to a dramatic total time
increase in both the Independent and Anti-correlated datas Fig. 13. Total time vsdsp,drp

Scalability vs. probability threshold Figure 12 draws the Scalability vs. number of groups per super groupFinally,
guery time against the probability threshold Note that Figure 14 portrays the effect of the total processing tinre fo
varying p has no effect on the number of candidate skylindne index-based methods as we vary the number of groups
tuples. Larger threshold values mean that candidate tgples we include in a super group. For ease of comparison, we

100

Total time (sec)
=
= o
o o

[N

2,1 3,2 2,1 2,

31 41 2 32
Dimensionality (dgpdgp)

31 41 22
Dimensionality (dgpdgp)

(a) Independent (b) Anti-correlated



also include the time for CSA, which is unaffected by the]
|sg| factor. Note thatsg| = 1 corresponds to a single group
per super group, which implies that SGC degenerates to t
BGC algorithm. It becomes apparent that in any case BGC'’s
performance is inferior to SGC’s fosg| > 1. In general, both  [4]
SGC and BCA are benefited by fewer aR-trees as explain
in Section V-B. Because the RP domain size is 32 and there
is a single RP attribute in the default scenario, the case &l
|sg| = 32 suggests that only a single aR-tree exists, whic
indexes all points. In this extreme setting, SGC and BCA
achieve their maximum efficiency. (8]

El

10000 10000

CSA —m—
SGC —x— [10]
Ty BCA —o— =
& 1000 & 1000
E g x = [11]
T k]
8 100 \@\e\ 2 10 sec x| [12]
CSA —=—
-
10 10 ECA [13]
1 4 8 16 32 1 8 16 32

4
Groups per super group (|sd)
(b) Anti-correlated

Groups per super group (|sd) [14]
(a) Independent

Fig. 14. Total time vs|sg| [15]

In conclusion, we make the following remarks regardingg;
the proposed algorithms for processing probabilistic extotal
skyline queries. The naive BIA algorithm is impractical irf1"]
all settings. Although SGC exhibits low CPU time, it is afg
attractive solution only when the number of candidates is
small, i.e., in independent low cardinality and dimensliipa 19
datasets. The other non-indexed approach, CSA perfor[’né
relatively well for medium-sized datasets and remainsiefiic [20]
even for very large RP domain sizes. The BCA algorithm El]
the most practical of the pack, as it exhibits solid perfanoe
in all scenarios tested. [22]

VIlI. CONCLUSION [23]

We introduced a methodology that allows the expression of
skyline queries without explicitly stating preferencescay (24!
attribute values. To handle the case of missing informatian
derive a set of uncertain preferences based on users’ grofi[es]
i.e., from stated preferences for past situations or cd)s;tteﬁ2 ]
As a result, the dominance relationships among tuples be-
come uncertain, which gives rise to probabilistic contektu[27]
skyline queries §-CSQ). We introduced several non-indexe{jzg]
and index-based algorithms for processin@SQs, which are
experimentally shown to significantly outperform a naivedid [29]
nested loops approach. [30]

In the future we plan to follow two directions for further
work on this subject. The first is to develop techniques for
efficiently processing top- queries, where tuples are ranke
based on their skyline probability. The second is to design]
methods that are cache-aware, i.e., use past query resultgi]

order to expedite processing of currgr€SQs. [33]
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