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Abstract

Semantic Web service descriptions are typically multi-
parameter constructs. Discovering semantically relevant
services, given a desirable service description, is typically
addressed by performing a pairwise logic-based match be-
tween the requested and offered parameters. However, little
or no attention is given to combining these partial results
to compile the final list of candidate services. Instead, this
is often done in an ad hoc manner, implying a priori as-
sumptions regarding the user’s preferences. In this paper,
we focus on identifying the best candidate Semantic Web
services given the description of a requested service. We
model the problem as a skyline query, also known as the
maximum vector problem, and we show how the service se-
lection process can be performed efficiently. We consider
different aspects, addressing both the requesters’ and the
providers’ points of view. Experimental evaluation on real
and synthetic data shows the effectiveness and efficiency of
the proposed approach.

1 Introduction

Web services, as a key technology for realizing service-
oriented architectures, promise to enable interoperability
and integration between heterogeneous systems and appli-
cations. The discovery and selection of the appropriate ser-
vices to fulfill a given request constitutes a fundamental task
in such architectures. However, current industry standards
for registering and locating Web services (WSDL, UDDI)
aim at describing the structure of the service interface and of
the exchanged messages, limiting the discovery process to
essentially keyword-based search. Even though interoper-
ability at the syntactic level is a necessary requirement, the
identification and selection of appropriate services should
be done in terms of the semantics of the requested and
offered capabilities. To this direction, the Semantic Web,

through the use of ontologies, provides the means to enrich
the service descriptions with semantic information, allow-
ing software agents to reason about the terms in these de-
scriptions. This is a significant step for increasing the preci-
sion of the discovery process, as well as for minimizing the
required human intervention. Several approaches have been
proposed for adding semantics to Web service descriptions,
including OWL-S, WSDL-S, and WSMO.

Semantic Web services matchmaking is basically ad-
dressed as a logic-based inference task [12, 11]. Service
descriptions have multiple parameters, annotated with con-
cepts from an associated ontology. A reasoner is used to
match, in a pairwise manner, parameters from the requested
and offered service. Then, the overall match is typically de-
termined either as the worst match over all parameters or
as a (weighted) average of the partial results. Clearly, both
cases rely on an implicit, ad hoc assumption regarding the
user’s preferences, leading to biased results. This may have
a significant impact on the perceived quality of the discov-
ery process. In the case of a human user, a low precision
on the top returned matches compromises the credibility of
the discovery engine. Even worse, in a fully automated sce-
nario, the software agent is expected to make a selection
among the top returned services; choosing an inappropriate
service breaks the whole workflow.

In this paper, we address the issue of selecting the best
candidate services among those partially matching the given
request. For this purpose, we use the notion of skyline [4], to
define and compute the potentially interesting services for
any type of user. A typical example used to illustrate this
concept is searching for cheap hotels close to the beach. A
sample set of hotels is depicted in Figure 1(a), characterized
by two dimensions, distance and price. The drawn line in-
dicates the skyline. A hotel belongs in the skyline if there
is no other hotel that is better in both dimensions, i.e., both
cheaper and closer to the beach. The distinguishing prop-
erty of the skyline is that for any preference function f that
is monotone on all attributes, if an object maximizes f , then
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Figure 1. Static and dynamic skylines

this object is part of the skyline. Also, for every object in
the skyline, there exists a monotone preference function that
is maximized by this object. Intuitively, this means that (a)
regardless of how a user weighs his/her preferences, his/her
top preferred object will be one of the skyline objects, and
(b) there is no skyline object which is nobody’s top prefer-
ence. The dynamic skyline is a variation, where the original
objects are compared w.r.t. a given reference object r [13].
The reference object defines a new space, depicted as the
inner coordinate system in Figure 1(b), and existing objects
need to be transformed in this space. In this example, points
a, c, b, d, h are projected to a′, c′, b′, d′, h′ respectively (i.e.,
p′x = |px − rx|, p′y = |py − ry|). The dynamic skyline for
the reference hotel r contains a′, c′ and g (i.e., a, c), but not
b′, d′, e, f and h′ (i.e., not b, d, h).

The analogy to our case is as follows: the space dimen-
sions correspond to the service parameters being matched;
the objects in the space correspond to the offered services;
the reference object corresponds to the user’s request.

Contributions. In particular, we make the following
contributions:

(a) We study the problem of discovering and selecting
the best candidate Semantic Web services w.r.t. the descrip-
tion of a desired service, formulating it as a skyline compu-
tation problem.

(b) Based on a state of the art skyline computation al-
gorithm, we provide an effective and efficient way to han-
dle the service selection process, dealing both with the re-
quester’s and the provider’s perspectives.

(c) We experimentally evaluate the performance of the
proposed approach using both real and synthetic data.

Outline. The rest of the paper is organized as follows.
Section 2 defines the notion of static and dynamic skyline
queries, and formulates the selection of Semantic Web ser-
vices as a skyline computation problem, presenting also a
suitable example. Section 3 shows how the best matches
can be identified efficiently. Specific aspects of the service
selection process, referring both to the service requester and
provider, are addressed. Section 4 presents a detailed eval-
uation of the proposed approach, while Section 5 discusses
related work. Section 6 concludes the paper.

2 Skyline Services

2.1 Background

Consider a set of points P in a d-dimensional space, with
pi denoting the value of point p∈P in the i-th dimension.

Definition 1 (Dominance) A point p∈P dominates another
point q∈P , denoted as p ≺ q, iff p is as good or better than
q in all dimensions and better in at least one dimension, i.e.,
∀i ∈ [1, d] : pi ≤ qi and ∃i ∈ [1, d] : pi < qi.

Definition 2 (Skyline) The skyline of P , denoted by SLP ,
comprises the set of points in P that are not dominated by
any other point, i.e., SLP = {p∈P |@q∈P : q ≺ p}.

Definition 3 (Dynamic Dominance) Given a reference
point r∈P , a point p∈P dominates another point q∈P w.r.t.
r, denoted as p ≺r q, iff ∀i∈[1, d] : |ri−pi| ≤ |ri− qi| and
∃i∈[1, d] : |ri − pi| < |ri − qi|.

Definition 4 (Dynamic Skyline) Given a reference point
r∈P , the dynamic skyline of P w.r.t. r, denoted by SLr

P ,
comprises the set of points in P that are not dynamically
dominated by any other point w.r.t. r, i.e., SLr

P = {p∈P | @
q∈P : q ≺r p}.

2.2 Problem formulation

The functional part of a Semantic Web service can be de-
scribed by a tuple SWS = (I , O, P , E), where I , O, P , E
are sets of inputs, outputs, preconditions, and effects, with
each parameter semantically annotated by means of an as-
sociated ontology O. We assume that the languages OWL
and OWL-S are used to represent, respectively, the domain
ontology and the requested and offered services. Match-
ing a service request R with a service offer S is based on
matching the individual parameters in the two descriptions.
For this purpose, a semantic matching function fm is used.
For input and output parameters the degree of match is typ-
ically determined by checking for equivalence or subsump-
tion relationship between the corresponding classes in the
ontology O. Similar to previously established approaches
[12, 11], we consider the following degrees of match, in de-
creasing order: DM = {exact, direct subclass, subclass,
direct superclass, superclass, sibling, fail}. Notice
that the distinction between direct subclass (superclass) and
subclass (superclass) refers to whether the considered sub-
sumption relationship is explicitly stated in the ontology or
inferred by the reasoner (e.g., by transitivity.) Different or-
dering or variations of these degrees may also be meaning-
ful in different applications and contexts [11]. Our approach
is generic and does not depend on this particular assump-
tion. Preconditions and effects are represented by logical



Algorithm Match(R, S)
Input: request R, offer S
Output: the match vector MV
begin1
IR← inputs of R , OR← outputs of R2
IS ← inputs of S , OS ← outputs of S3
MV ← add MatchIn (IR,IS )4
MV ← add matchOut (OR,OS )5
return MV6

end7

MatchIn(IR,IS )
Input: requested (IR) and offered (IS ) inputs
Output: the input match vector IMV
begin1
hasMatch← new array()2
for I∈IR do3
tmpMatches← new array()4
for J∈IS do5
m← DegreeOfMatch (I ,J)6
tmpMatches← add m7
if m 6=“fail” then hasMatch← add J8
IMV ← add max{tmpMatches}9

end10
if hasMatch containsAll IS then11
IMV ← add “exact”12

else IMV ← add “fail”13
end14
return IMV15

end16

MatchOut(OR,OS )
Input: requested (OR) and offered (OS ) outputs
Output: the output match vector OMV
begin1

for I ∈ OR do2
tmpMatches← new array()3
for J ∈ OS do4
m← DegreeOfMatch (I ,J)5
tmpMatches← add m6

end7
OMV ← add max{tmpMatches}8

end9
return OMV10

end11

Figure 2. Matching service I/Os

formulae and are matched by checking for logical implica-
tion between them. The results of the match in this case is
exact or fail, depending on whether such an implication
holds or not.

The inputs and preconditions of the request should match
those of the service, while the service outputs and effects
should match those of the request. Thus, applying the
function fm to pairs of corresponding parameters from the
requested and offered service, results in a match vector
MV ∈DMk, k = |MV | = |SI | + |SP | + |RO| + |RE |.
However, the number, as well as the order, of the parameters
may vary among the set of available services, rendering the
match vectors not comparable. To deal with this problem,
i.e., to fix the number and the order of the dimensions, we
use as reference dimensions the ones specified by the user’s
request. Still, two issues need to be resolved in this case.
First, the same request input/precondition may provide
a match for more than one service inputs/preconditions.
Then, the best degree of match is considered for the corre-
sponding position in MV . Second, it is possible that not all
service inputs/preconditions are matched. To capture this,
we introduce two additional fields in MV , corresponding
respectively to inputs and preconditions, with the values ex-
act or fail, indicating accordingly whether there exists a pa-
rameter that has not been matched (alternatively, the num-
ber of parameters that failed to match can be used). Thus,
the size of MV becomes |MV | = |RI | + |RO| + |RP | +
|RE | + 2 (i.e., fixed for a given R). The matching algo-
rithm, Match(R,S) is presented in detail in Figure 2. The
function DegreeOfMatch(I, J) uses a reasoner to deter-
mine the degree of match between the ontology concepts
I ,J . For brevity, we only consider inputs and outputs; pre-
conditions and effects can be matched accordingly.

We can now define the notions of (dynamic) dominance
and (dynamic) skyline for Semantic Web services selection.

Definition 5 (Service Dominance) Given a set of Seman-

tic Web services S and a request R, a service S1 ∈ S
dominates another service S2 ∈ S w.r.t. R, denoted as
S1 ≺R S2, iff ∀i ∈ [1, |MVR,S1 |] : MV i

R,S1
≤ MV i

R,S2

and ∃i ∈ [1, |MVR,S1 |] : MV i
R,S1

< MV i
R,S2

.

Definition 6 (Skyline Services) Given a set of Semantic
Web services S and a request R, the skyline services of S
w.r.t. R, denoted by SLR

S , are those not dominated by an-
other service w.r.t. R: SLR

S={S∈S|@S′∈S: S′≺RS}.

2.3 Illustrative Example

Assume a sample service request and six available ser-
vices, as shown in Figure 3(a). For simplicity, we con-
sider only input and output parameters, which are classes
from the hierarchy depicted in Figure 3(b). The derived
match vectors are presented in Figure 3(c), with INX in-
dicating whether all service inputs are matched or not. For
instance, in the case of S4, the provided input C6 provides
a direct superclass match with C10 and a superclass
match with C14. Thus, MV IN1

R,S4
= direct superclass and

MV INX

R,S4
= exact. For the service S2, MV IN1

R,S2
= fail and

MV INX

R,S2
= fail, since the request input C6 does not pro-

vide a match for the service input C9. The rest of the results
can be verified similarly.

Given the match vectors shown in Figure 3(c), the prob-
lem is to identify the best matches. Even for such a small
number of services this is no trivial task. For this purpose,
we consider as best matches those services that belong in
the skyline for the given request. Based on the definitions
in Section 2.2, we can conclude that (a) the services S2, S4

and S5 are dominated by both S1 and S3, (b) S6 is domi-
nated by S3, and (c) S1 and S3 are not dominated by any
service. Therefore, S1 and S3 constitute the skyline, i.e.,
the best matches, for the request R.

One might argue that S1 constitutes an “overall” bet-
ter match than S3, given that direct subclass indicates a



INPUTS OUTPUTS
R C6 C7, C8
S1 C3 C5, C7
S2 C9 C2, C9
S3 C3 C2, C8
S4 C10, C14 C15
S5 C1 C6
S6 - C6, C8, C9

root

C14 C15

C10

C6

C11
C12

C7

C4

C2

C3

C1

C5

C13

C8 C9

(a) Service request and offers (b) A sample class hierarchy
IN1 INX OUT1 OUT2

S1 dir subcls exact exact dir subcls
S2 fail fail subcls sibling
S3 dir subcls exact subcls exact
S4 dir supercls exact supercls fail
S5 subcls exact fail fail
S6 fail exact fail exact

(c) The resulting match vectors

Figure 3. Illustrative example

closer match than subclass. However, this would only be
true for users with an equal preference on both output pa-
rameters or a higher preference on OUT1. Instead, a user
concerned about parameter OUT2 would probably be more
interested in the service S3. Selecting the skyline services
guarantees the retrieval of the best matches regardless of
user preferences.

3 Selecting the Best Candidates

3.1 Main algorithm

We leverage work existing in the database literature,
and in particular the Bitmap algorithm, introduced in [15].
Since the semantic match between requested and offered
services is typically expressed by a small set of discrete
degrees of match, as discussed in the previous section, the
choice of the Bitmap algorithm is natural, as it is especially
designed for discrete, low cardinality domains. Specifi-
cally, it employs a bitmap representation to encode the data
points, and uses bit-wise operations to determine the sky-
line. The efficiency of the algorithm relies on the high speed
of bit-wise operations. Note that, even though more ef-
ficient skyline algorithms have been proposed ([13]), they
rely on the assumption that the data set is indexed.

The skyline service selection algorithm works as fol-
lows. First, the match vectors are translated to an appropri-
ate bitmap representation. In fact, to avoid any extra over-
head, this step can be integrated with the matching phase,
i.e., the result of the matcher can be directly encoded in
this representation. Then, each match vector is checked for
dominance against all other match vectors. The latter step is
efficiently performed by fast bit-wise AND/OR operations
on the bitmap representations obtained in the former step.

Obtaining the bitmap representation. We assume the
dominance relationship described in Section 2.2 and assign
the values {1, 2, . . . , 7} to the 7 possible degrees of match,

IN1 INX OUT1 OUT2

S1 0111111 1111111 1111111 0111111
S2 0000001 0000001 0011111 0000011
S3 0111111 1111111 0011111 1111111
S4 0001111 1111111 0000111 0000001
S5 0011111 1111111 0000001 0000001
S6 0000001 1111111 0000001 1111111

Figure 4. Bitmap representation

A1 = 101110 B1 = 101010
A2 = 101111 B2 = 000000
A3 = 111100 B3 = 111000
A4 = 111111 B4 = 111001

A = 101100 B = 111011

A&B = 101000

Figure 5. Dominance check for S4

with 1 corresponding to exact and 7 to fail 1. We rep-
resent these values in a bitmap of size 7, as follows: if
q ∈ {1, 2, . . . , 7} is the degree of match, then its bitmap
representation has value 0 for the bits 1 to q − 1, and 1 for
the bits q to 7. For example, an exact degree of match,
i.e., value 1, is represented as 1111111, whereas a sibling
degree of match, i.e., value 6, is represent as 0000011. Re-
turning to our running example, the corresponding bitmap
representations are depicted in Figure 4 (the function of the
bold and italicized bits will be discussed in the following).

Checking for dominance. Determining whether a service
belongs to the skyline involves extracting vertical bitslices
and performing bitwise AND/OR operations. This process
is best illustrated through our running example. Assume
we wish to discover whether service S4 with match vector
MVS4 = (4, 1, 5, 7) is part of the skyline. For each field
i ∈ [1, |MVS4 |] of MVS4 , two vertical bitslices, Ai and Bi,
are extracted. In particular, letting q = MV i

S4
, we obtain

the bitslice Ai (resp., Bi) by juxtaposing the q-th (resp., the
preceding (q − 1)-th) bit of the i-th field for all services.
Note that when q− 1 < 1, Bi is explicitly set to all zeros.
Since MV 1

S4
= 4 the bitslice A1 = 101110 is obtained

by juxtaposing the 4th bits of the first field for all services.
Similarly, B1 = 101010 is obtained by juxtaposing the 3rd
bits. Figure 4 shows the Ai bitslices in bold typeface; the
Bi bitslices are shown italicized (B2 = 000000 is omitted).

Assume a service request R and an offer S. Ob-
serve that the bitslice Ai of S encodes which services
(i.e., those whose bit is set) are equally as good or better
matches than S w.r.t. the i-th field of the match vector.
On the other hand, the bitslice Bi of S encodes the ser-
vices that are strictly better matches for the i-th field. Let
A = A1&A2& . . . &A|MVS |, where & represents the bit-
wise AND operation. Then, A indicates the services that

1The adaptation to different degrees of match and dominance relation-
ships is straightforward.



Algorithm Skyline(R,S)
Input: request R, offers S
Output: skyline services SLR

S
begin1

for S ∈ S do2
MV ←MV ∪ Match(R, S)3

end4
bm← BuildBitmap(MV)5
for Sj ∈ S do6
DSj

← DominatedBy(j,bm)7
ifDSj

is empty then8
SLR

S ← SLR
S ∪ Sj9

end10
end11
return SLR

S12
end13

DominatedBy(j,bm)
Input: service index j, bitmaps bm
Output: servicesDSj

that
dominate Sj

begin1
{A, B} ← ABvectors (j,bm)2
for Sk ∈ S do3

if (A&B)[k] is set then4
DSj

← DSj
∪ Sk5

end6
end7
returnDSj8

end9

ABvectors(j,bm)
Input: service index j, bitmaps bm
Output: vectors A, B for service

Sj

begin1
A← 1 // mask with all 1s2
B ← 0 // mask with all 0s3
for i ∈ [1, |MVSj

|] do4
q ←MV i

Sj5
Ai ← BitSlice(q,i)6
Bi ← BitSlice(q-1,i)7
A← A&Ai8
B ← B|Bi9

end10
return {A, B}11

end12

Dominates(j,bm)
Input: service index j, bitmaps bm
Output: servicesDSj

that Sj

dominates
begin1
{A, B}←ABvectors (j,bm)2
for Sk ∈ S do3

if (A|B)[k] is not set then4
DSj

← DSj
∪ Sk5

end6
end7
returnDSj8

end9

Figure 6. Determining the skyline services

are equally as good or better in all fields of the match vector.
Similarly, let B = B1|B2| . . . |B|MVS |, where | represents
the bitwise OR operation. Then, B indicates the services
that are strictly better in at least one field of the match vec-
tor. According to Definition 5, if a service has its bit set
both in A and B, then it dominates S, and, hence, the latter
is not in the skyline. On the other hand, if A&B has no
bit set, then S is not dominated by any other service, and
thus belongs to the skyline. Figure 5 illustrates the domi-
nance check for S4, which is dominated by S1 and S3. The
algorithm is presented in detail in Figure 6.

Next, we extend the algorithm to provide key aspects of
functionality desirable by service requesters and providers.

3.2 Requester’s perspective

Three key elements of functionality for service re-
questers are (a) ranking, (b) redefinition, and (c) relaxation.
We discuss each aspect in detail.
Ranking. The selected skyline services are determined re-
gardless of specific user preferences; hence, are not ranked.
However, in many cases, e.g., when the number of returned
results is large, ranking is required. To this end, we present a
ranking function that is user preference agnostic and is well
aligned with the dominance notion. Intuitively, services that
dominate a large number of other services are potentially
more interesting and should be examined first.

Definition 7 (Dominance Set and Score) Given a set of Se-
mantic Web services S, a request R, and a service S ∈ S,
the dominance set of S comprises those services dominated
by S, i.e., DS = {Si ∈ S|S ≺R Si}. The dominance score
of S is the cardinality of DS , i.e., dsS = |DS |.

The skyline services are ranked based on their domi-
nance score. To calculate this score we utilize the A and
B bitmaps for service S. Observe that ¬A, where ¬ de-
notes negation, indicates the services that are strictly worse
than S in at least one field of the match vector. Similarly,
¬B indicates those services being worse or equal to S in all

fields of the match vector. It is easy to show that if a service
has its bit set both in ¬A and ¬B, then it is dominated by
S. Hence, calculating the dominance score of S resolves to
counting the bits set in (¬A)&(¬B).

Redefinition. Suppose that the user would like to redefine
his/her request in terms of removing or adding request pa-
rameters, either because he/she is not satisfied by the match-
making, or due to exploratory behaviour. The proposed
methodology handles such a scenario efficiently, requiring
minimum invocation of the matcher and the fewest changes
to the bitmap representation of the match vectors. We dis-
tinguish 4 cases and examine the necessary changes to the
services selection process.

Adding input parameter. We need to run the match algo-
rithm for the new parameter. Note also that the INX field
of the match vector might be affected by the matching, and
thus, it needs to be re-computed (if the previous value was
fail). Then, we need to build the bitmap representation for
the field corresponding to the new parameter, to update the
representation for the INX field, if changed, and to execute
the bitmap algorithm.

Deleting input parameter. Only the INX field of the
match vector may be affected by the matching (if it was
previously set to exact). Therefore, we need to rebuild its
bitmap representation. Since the deleted parameter might
be needed in a future request, we do not delete the repre-
sentation corresponding to its match vector field; rather, we
modify the bitmap algorithm to skip that field in the calcu-
lation of the A, B bitmaps.

Adding output parameter. We need to run the match al-
gorithm for the added output parameter. Then, the bitmap
representation for the new parameter must be built and the
bitmap algorithm must be executed.

Deleting output parameter. In this case, the match
algorithm need not run. We choose to preserve the bitmap
representation for the corresponding field and modify the
bitmap algorithm to skip that field in the A, B calculation.



Relaxation. Consider the case that the user would like to
relax the dominance requirement and retrieve additional rel-
evant services besides those included in the skyline. Such a
functionality would prove useful when there are a few very
dominant services that hide some other potentially interest-
ing offers. For this purpose, we provide the user with the
option to examine the next most dominant services, i.e., the
next skylayer.
Definition 8 (l-Skylayer Services) Given a set of Semantic
Web services S and a request R, the l-skylayer services of
S w.r.t. R, denoted by SLR

S (l), is defined recursively as
follows: SLR

S [1, l] =
⋃

0<k≤l

SLR
S (k), where SLR

S (1) is the

skyline services SLR
S and SLR

S (l) = SLR
SrSLR

S [1,l]
.

Finding the l-skylayer services can be performed by
some tweaking of the bitmap algorithm, without invoking
the matcher. Assume that the (l-1)-skylayer has been found.
We maintain a bitmap mask C that indicates which services
belong to one of the previous skylayers, i.e., in SLR

S [1, l]. In
the calculation of the A bitmaps for the l-skylayer we need
to mask it (i.e., perform bitwise AND operation) with the
negation of C, so as to suppress services previously found.
Finally, the bitmap mask C is updated by setting the bits of
the l-skylayer services.

3.3 Provider’s perspective

Existing works on service discovery focus on locating
one or more services that are appropriate for fulfilling the
client’s request. In the remaining of this section, we turn
our attention towards the provider’s view of the service se-
lection process. From this perspective, a provider would be
interested in analyzing the position of his/her services in the
market and their potential to attract clients. We consider two
scenarios that might be of interest for a service provider.
Service competitiveness. In this scenario, the provider is
interested in evaluating how competitive his/her provided
service S is w.r.t. a request R and a set of other available
services S . This can be accomplished by means of two mea-
sures: (a) the number of services dominated by S w.r.t. R;
(b) the number of services dominating S w.r.t. R. The first
is the dominance score of S (see Definition 7) and is cal-
culated by the function Dominates, shown in Figure 6. The
second is provided similarly, through the function Dominat-
edBy, also shown in Figure 6.
Service adaptation. In this scenario, the provider would
like to appropriately modify the offered service S in order
to target specific user requests, i.e., so that the service would
be in the skyline for a considered request R. To keep the re-
quired modifications to a minimum, we consider the case
where only one parameter is subject to change, and our

Algorithm ModDim(R,Sj ,S)
Input: request R, service Sj , competing

services S
Output: the dimension d to modify
begin1

SLR
S ← Skyline (R,S)2

DSj
← DominatedBy (j,bm)3

SLD ← SLR
S ∩ DSj4

d←i∈[1, |MVSj
|] s.t.5

max
S∈SLD

|MV i
Sj
−MV i

S | is minimized

return d6
end7

Figure 7. Modifying service parameter

goal is to determine the parameter for which the required
change is minimized. For this purpose, we calculate the
services that dominate S and are part of the skyline for the
request R. Then, we compare the values in all the dimen-
sions of the selected match vectors, to find the maximum
differences in each dimension. The dimension having the
minimum among these differences is selected. The intu-
ition lies in the fact that a service is included in the skyline,
when it becomes better than all its competitors in at least
one dimension. This process is formally described by the
algorithm in Figure 7. As an example, consider the ser-
vice shown in black in the same figure. The shaded area
contains the services that dominate it, including two in the
skyline. The arrows represent the maximum differences for
each dimension; clearly, the dimension of the shortest arrow
corresponds to the minimal change required.

4 Experimental Evaluation

In this section, we present a comprehensive study eval-
uating the effectiveness and the efficiency of our skyline-
based approach, termed Skyline, for selecting the best
Semantic Web services w.r.t. a desirable service descrip-
tion, using both real and synthetic data.
Retrieval Effectiveness. To simulate a real-world scenario,
we use the OWL-S service retrieval test collection OWLS-
TC v22. This collection contains services retrieved mainly
from public IBM UDDI registries, and semi-automatically
transformed from WSDL to OWL-S. More specifically, it
comprises: (a) a set of ontologies, derived from 7 different
domains (education, medical care, food, travel, communica-
tion, economy and weapons), used to semantically annotate
the service parameters, (b) a set of 576 OWL-S services, (c)
a set of 28 sample requests, and (d) the relevance set for
each request (manually identified).

To better gauge the performance of our approach we con-
sider the matchmaking algorithm of [9], termed OWLS-MX.
OWLS-MX is a hybrid matchmaker, which, apart from logic-
based match, supports different IR similarity metrics for

2http://projects.semwebcentral.org/projects/owls-tc/
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Figure 8. Experimental evaluation on real and synthetic data

content-based retrieval (e.g., cosine similarity or extended
Jacquard similarity). Since the focus of this paper is on se-
mantic matching, we only consider the logic-based filters
while running OWLS-MX. It is important to note, however,
that our approach is generic in that it can straightforwardly
consider other types of filters, simply by terms of increasing
the size of the match vectors to accommodate for the addi-
tional parameters; hence, the process of selecting the best
matches does not change.

For each request, we calculate the match vectors and ap-
ply Skyline to select the best candidates. Since the num-
ber of services in the skyline may vary, successive skylayers
are computed until an adequate number of services has been
retrieved (see the relaxation case in Section 3.2). Thus, to
each obtained service S that belongs to the l-skylayer and
has dominance score dsS , we assign the tuple 〈l, dsS〉. As
discussed in Section 3, we consider better matches the ser-
vices that belong to the lowest l skylayer, and among those
that belong to the same skylayer we consider better matches
the ones with higher dominance score dsS , i.e., we rank the
obtained services by l, solving ties using dsS .

Similarly, for each request the logic-based filters of
OWLS-MX are applied to all services. OWLS-MX assigns
to each service a score based on the worst degree of match
among all parameters. Finally, the services are ranked ac-
cording to their score, i.e., the best match is a service that
has exact match on all parameters.

We apply well-established IR metrics to measure the
performance of the two methods, w.r.t. the corresponding
relevance sets [1]. In particular, Figure 8(a) depicts the
micro-averaged recall-precision curves for all the queries
in the test collection. It is clear that Skyline outperforms
OWLS-MX in terms of precision at all recall levels, as well as
achieving a higher final recall. The results for the measures
(a) Mean Average Precision (MAP), where average preci-
sion refers to the average of the precision after each relevant
service retrieved, and (b) precision at N are detailed below:

Method MAP P@1 P@2 P@3 P@5 P@10
Skyline 0.83 0.94 0.93 0.91 0.87 0.76

OWLS-MX 0.71 0.91 0.79 0.75 0.67 0.67

These measures emphasize on returning relevant results ear-
lier, which is important as users often tend to examine only
the first few results retrieved. In particular, P@1 is espe-
cially important, as it determines the success in fully auto-
mated service discovery scenarios, where no human user is
involved in the process, and thus the top-1 result is selected.
Again, Skyline outperforms OWLS-MX in all cases.

Synthetic data. We measure the performance overhead as-
sociated with our approach for computing the skyline ser-
vices. The algorithm was implemented in Java and the ex-
periments were conducted on a Pentium D 2.4GHz with
2GB of RAM, running Linux. The reported measurements
refer only to the process of computing the skyline, and do
not include the time to perform the logic-based match for
each parameter. The later depends on factors which are out-
side the scope of this paper, e.g., the size and type of on-
tologies used or the performance of the employed reasoner.

We construct match vectors of 6 parameters and as-
sign to each degrees of match under three distribu-
tions: in independent (ind), degrees of match are as-
signed independently to each parameter; in correlated
(cor), the values in the match vector are positively cor-
related, i.e., a good match in some service parameters in-
creases the possibility of a good match in the others; in
anti-correlated (ant) the values are negatively cor-
related, i.e., good matches (or bad matches) in all parame-
ters are less likely to occur.

Figure 8(b) illustrates the running time, in milliseconds,
for determining the services that belong to the l-skylayer,
for l = 1 (i.e., the skyline), and l = 3, for the three types of
distributions, while varying the number of services from 2K
up to 10K. Observe that the time required is higher (lower)
for anti-correlated (correlated) data, as the number of sky-
line services in this case is also higher (lower). Still, it does
not exceed roughly 0.5 seconds for all cases, except that of
3 skylayers of anti-correlated data, where it takes roughly 2
seconds. Notice, however, that since for the anti-correlated
case the number of services contained in the first skylayer is
already quite large, computing additional layers is normally
not required.



Figure 8(c) illustrates, for each distribution, the number
of services retrieved by the first l-skylayers, for l = 1 to
5, and for an initial set of 10K services. As shown, the
correlation of the degrees of match directly affects the num-
ber of selected services for each layer. For instance, the
skyline comprises 16, 162, and 1221 services for the cor-
related, independant, and anti-correlated case respectively.
These results prove the necessity of the extensions proposed
in Section 3.2 for ranking and relaxation.

5 Related Work

Service discovery is a fundamental task in service-
oriented architectures, and the use of semantics is critical
in pursuing a higher degree of interoperability and automa-
tion. Several works have dealt with the problem of match-
making for Semantic Web services. The basic idea, as pre-
sented in [12, 11], is to determine the degree of match as a
result of logic inference between concepts contained in the
service request and offer. Matching of OWL-S services is
performed in [6], by a similarity measure for OWL objects,
based on the ratio of common RDF triples in their descrip-
tions. The algorithm in [5] assesses the similarity between
requested and offered I/Os, by means of the proportion of
shared properties between the corresponding concepts in the
ontology. In [14] the ranking of Semantic Web services is
determined by a semantic similarity measure defined on the
associated domain ontology. The matchmaking algorithm
in [3] matches sets of requested and offered parameters,
based on the concept of matching bipartite graphs. Exist-
ing implemented systems include OWLS-MX [9], a hybrid
matchmaker for OWL-S services, and WSMO-MX [7], a
similar matchmaker for WSMO-oriented service descrip-
tions. These works focus on matching pairs of parameters
from the requested and offered services, while the overall
match is typically calculated as a weighted average, assum-
ing the existence of an appropriate weighting scheme.

The application of user preferences, expressed as soft
constraints, in Web services selection has also been studied:
(a) as a query language for expressing preferences, and an
algebraic optimization of preference queries [8]; (b) as ex-
pansion of service requests with user-specific preferences,
either stated explicitly or acquired implicitly (e.g., previ-
ous interactions, user profile) [2]. The approach in [10]
uses utility function policies to model service configura-
tions and associated prices and preferences, and develops an
algorithm for optimal service selection. These approaches
are complementary to our work, as determining the skyline
services identifies the best matches w.r.t. any user prefer-
ences. Then, in the presence of user-specific preferences,
the optimal services can be selected from this subset, in-
stead of considering all the available services, thus reducing
the search time.

6 Conclusions
In this paper, we have formulated the problem of Se-

mantic Web services selection, given a desirable service de-
scription, using the notion of skyline query. We have shown
how the best matches can be identified efficiently by a sky-
line computation algorithm, and we have addressed com-
mon tasks involved in the service selection process, refer-
ring both to the requesters’ and the providers’ perspectives.
Experimental evaluation on real and synthetic data shows
that the best matches can be identified very efficiently, with
a significant increase in recall and precision.

On-going work is focused on the improvement of our
prototype w.r.t. the service selection process, by facilitat-
ing the user in expressing and refining his/her queries and
providing faceted browsing capabilities.
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