
Routing Directions: Keeping it Fast and Simple

Dimitris Sacharidis
Institute for the Mgmt. of Information Systems

“Athena” Research Center
Athens, Greece

dsachar@imis.athena-innovation.gr

Panagiotis Bouros
Department of Computer Science

Humboldt-Universität zu Berlin
Berlin, Germany

bourospa@informatik.hu-berlin.de

ABSTRACT
The problem of providing meaningful routing directions over
road networks is of great importance. In many real-life cases,
the fastest route may not be the ideal choice for providing
directions in written/spoken text, or for an unfamiliar neigh-
borhood, or in cases of emergency. Rather, it is often more
preferable to offer “simple” directions that are easy to mem-
orize, explain, understand or follow. However, there exist
cases where the simplest route is considerably longer than
the fastest. This paper tries to address this issue, by find-
ing near-simplest routes which are as short as possible and
near-fastest routes which are as simple as possible. Partic-
ularly, we focus on efficiency, and propose novel algorithms,
which are theoretically and experimentally shown to be sig-
nificantly faster than existing approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms

Keywords
shortest path, turn cost, near-shortest path

1. INTRODUCTION
Finding the fastest route on road networks has received

a renewed interest in the recent past, thanks in large part
to the proliferation of mobile location-aware devices. How-
ever, there exist many real-life scenarios in which the fastest
route may not be the ideal choice when providing routing
directions.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’13, November 05 - 08 2013, Orlando, FL, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2521-9/13/11$15.00.
http://dx.doi.org/10.1145/2525314.2525362

As a motivating example, consider the case of a tourist
asking for driving directions to a specific landmark. Since
the tourist may not be familiar with the neighborhood, it
makes more sense to offer directions that involve as few
turns as possible, instead of describing in detail an elaborate
fastest route. As another example, consider an emergency
situation, e.g., natural disaster, terrorist attack, which re-
quires an evacuation plan to be communicated to people on
the site. Under such circumstances of distress and disor-
ganization, it is often desirable to provide concise, easy to
memorize, and clear to follow instructions.

In both scenarios, the simplest route may be more prefer-
able than the fastest route. As per the most common inter-
pretation [21], turns (road changes) are assigned costs, and
the simplest route is the one that has the lowest total turn
cost, termed complexity. For simplicity, in the remainder of
this work, we assume that all turns have equal cost equal to
1; the generalization to non-uniform costs is straightforward.

In some road networks, the simplest and the fastest route
may be two completely different routes. Consider for ex-
ample a large city, e.g., Paris, that has a large ring road
encircling a dense system of streets. The simplest route be-
tween two nodes that lie on (or are close to) the ring, would
be to follow the ring. On the other hand, the fastest route
may involve traveling completely within the enclosing ring.
As a result the length of the simplest route can be much
larger than that of the fastest route, and vice versa.

Surprisingly, with the exception of [13], the trade-off be-
tween length and complexity in finding an optimal route has
not received sufficient attention. Our work addresses this is-
sue by studying the problem of finding routes that are as
fast and as simple as possible.

In particular, we first study the fastest simplest problem,
i.e., of finding the fastest among all simplest routes, which
was the topic of [13]. We show that although, for this prob-
lem, a label-setting method (a variant of the basic Dijk-
stra’s algorithm) cannot be directly applied on the road net-
work, it is possible to devise a conceptual graph on which it
can. In fact, our proposed algorithm is orders of magnitude
faster than the baseline solution. Moreover, using a similar
methodology, it is possible to efficiently solve the simplest
fastest problem.

Subsequently, we investigate the length-complexity trade-
off and introduce two novel problems that relax the con-
straint that the returned routes must be either fastest or
simplest. The fastest near-simplest problem is to find the
fastest possible route whose complexity is not more than
1 + ϵ times larger than that of the simplest route. On the

other hand, the simplest near-fastest problem is to find the
simplest possible route whose length is not more than 1 + ϵ
times larger than that of the fastest route.
These near-optimal problems are significantly more diffi-

cult to solve compared to their optimal counterparts. The
reason is that there cannot exist a principle of optimality,
exactly because the requested routes are by definition sub-
optimal in length and complexity. Therefore, one must ex-
haustively enumerate all routes, and only hope to devise
pruning criteria to quickly discard unpromising sub-routes.
We propose two algorithms, based on route enumeration,

for finding the simplest near-fastest route; their extension for
the fastest near-simplest problem is straightforward. The
first follows a depth-first search principle in enumerating
paths, whereas the second is inspired by A∗ search. Both al-
gorithms apply elaborate pruning criteria to eliminate from
consideration a large number of sub-routes. Our experimen-
tal study shows that they run in less than 400 msec in net-
works of around 80,000 roads and 110,000 intesections.
The remainder of the paper is organized as follows. Sec-

tion 2 formally defines the problems and reviews related
work. Section 3 discusses the fastest simplest, and Section 4
the simplest near-fastest problem. Then, Section 5 presents
our experimental study and Section 6 concludes the paper.

2. PRELIMINARIES
Section 2.1 presents the necessary definition, while Sec-

tion 2.2 reviews relevant literature.

2.1 Definitions
Let V denote a set of nodes representing road intersec-

tions. A road r is a sequence of distinct nodes from V . Let
R denote a set of roads, such that all nodes appear in at
least one road, and any pair of consecutive nodes of some
road do not appear in any other, i.e., the roads do not have
overlapping subsequences. For a node n ∈ V , the notation
R(n) ⊆ R represents the non-empty subset of roads that
contain n. For two consecutive nodes ni, nj of some road r,
the notation R(ni, nj) is a shorthand for r.

Definition 1. The road network of R is the directed graph
GR(V,E), where V is the set of nodes, and E ⊆ V ×V
contains an edge eij = (ni, nj) if ni, nj are consecutive
nodes in some road.

A road network is associated with two cost functions. The
length function L assigns to each edge a cost representing
its length, i.e., the travel time or distance between them;
formally, L : E → R+ maps each edge (ni, nj) to the length
L(ni, nj) of the road segment ni to nj .
The complexity function C assigns to each turn from road

ri to road rj via node nx, which lies on both ri and rj , the
cost of making the turn. Formally, C : V×R×R → R+ maps
(nx, ri, rj) to complexity C(nx, ri, rj) from ri to rj via nx.
A route ρ = (na, nb, . . .) is a path on graph GR, i.e., a

sequence of nodes from V , such that for any two consecutive
nodes, say ni, nj , there exists an edge eij in E.
The length L(ρ) of a route ρ is the sum of the lengths for

each edge it contains, and represents the total travel time or
distance covered along this route; formally,

L(ρ) =
∑

(ni,nj)∈ρ

L(ni, nj). (1)

ns

nt

n6

n1

n4

n8

n5

n2

n11

n3

n10

⇢1

⇢2

⇢3

⇢4

ra

rd
re

rf

rg

rb rarc

⇢5

n7

n9

Figure 1: An example road network of seven roads
ra – rg, where five routes ρ1 – ρ5 from node ns to nt

are depicted.

Table 1: Costs of routes in Figure 1

road length complexity type

ρ1 10 4 SF
ρ2 40 1 FS
ρ3 20 3 SNF (ϵ = 1)
ρ4 30 2 FNS (ϵ = 1)
ρ5 40 2 —

A route from source ns to target nt is called a fastest route
if its length is equal to the smallest length of any route from
ns to nt. Given a parameter ϵ, a route from ns to nt is
called an near-fastest route if its length is at most (1 + ϵ)
times that of the fastest route from ns to nt.

The complexity C(ρ) of a route ρ is the sum of complexities
for each turn it contains; formally

C(ρ) =
∑

(ni,nj ,nk)∈ρ

C(nj , R(ni, nj), R(nj , nk)), (2)

where ni, nj , nk are three consecutive nodes in ρ, and
R(ni, nj), R(nj , nk) are the (unique) roads containing seg-
ments (ni, nj) and (nj , nk), respectively. A route from ns

to nt is called a simplest route if its complexity is equal to
the lowest complexity of any route from ns to nt. Given a
parameter ϵ, a route from ns to nt is called a near-simplest
route if its complexity is at most (1 + ϵ) times that of the
simplest route from ns to nt. Note that the complexity of a
simplest route can be 0, i.e., when no road changes exist. In
this case, all near-simplest routes must also have complexity
0. To address this, one could simply change the definition of
complexity to be the number of roads in a route, and thus
at least 1. In the remainder of this paper, we ignore this
case, and simply use the original definition of complexity.

This work deals with the following problems. To the best
of our knowledge only the first has been studied before in
literature [13].

Problem 1. [Fastest Simplest Route] Given a source
ns and a target nt, find a route that has the smallest length
among all simplest routes from ns to nt.

Problem 2. [Simplest Fastest Route] Given a source
ns and a target nt, find a route that has the smallest com-
plexity among all fastest routes from ns to nt.

Problem 3. [Fastest Near-Simplest Route] Given a
source ns and a target nt, find a route that has the smallest
length among all near-simplest routes from ns to nt.

Problem 4. [Simplest Near-Fastest Route] Given a
source ns and a target nt, find a route that has the lowest
complexity among all near-fastest routes from ns to nt.

Note that the first two problems are equivalent to the
last two, respectively, if we set ϵ = 0. We next present an
example illustrating these problems.

Example 1. Consider the road network of Figure 1 con-
sisting of 7 two-way roads ra – rg. Note that all roads have
either a north-south or an east-west direction, except road
ra, which is a ring-road and is thus depicted with a stronger
line. The figure also portrays 11 road intersections n1–n11

with hollow circles, and two special nodes, the source ns,
drawn with filled circle, and the target nt, drawn with a
filled circle inside a larger hollow one.
Next, consider five possible routes ρ1–ρ5 starting from ns

and ending at nt, which are drawn in Figure 1, and whose
lengths and complexities are shown in Table 1. Observe
that ρ1 is the fastest route from ns to nt with length 10,
and, moreover, it has the lowest complexity 4 among all
other fastest route (no other exists). Thus, ρ1 is the simplest
fastest route and the answer to Problem 2.
On the other hand, ρ2 is the fastest simplest route and

the answer to Problem 1, as it has the lowest complexity 1,
following the ring-road to reach the target. But its length,
40, is quite large compared to the other possible routes.
Assume ϵ = 1 for the complexity, so that a near-simplest

route can have complexity at most twice that of the sim-
plest route, i.e., 2. Observe that two routes ρ4 and ρ5 are
near-simplest. Among them ρ is the fastest, and is thus the
answer to Problem 3.
Moreover, assume ϵ = 1 for the length as well, so that a

near-fastest route can have length at most twice that of the
fastest route, i.e., 20. Notice that only ρ3 is near-fastest and
thus is the answer to Problem 4.
Observe that if we set ϵ = 2 for the length, near-fastest

routes can have length as large as 30. In this case, ρ3 and
ρ4 are near- fastest, with the latter being the simplest near-
fastest.

2.2 Related Work
Dijkstra [7] showed that the fastest route problem exhibits

a principle of sub-route optimality and proposed its famous
dynamic programming method for finding all fastest routes
from a given source. Bi-directional search [17], i.e., initiating
two parallel searches from the source and the target can sig-
nificantly expedite finding the fastest source-to-target route.
Since this early work around the 60’s, numerous network pre-
processing techniques exist today, including landmarks [11],
reach [12], multi-level graphs [20], graph hierarchies [19, 9],
graph partitioning [16], labelings [1], and their combinations
[2, 3, 6], which are capable of speeding up Dijkstra’s algo-
rithm by orders of magnitude in several instances.
The problem of finding the simplest route was first studied

in [5], and more recently in [21, 8]. The basic idea behind
these methods, is to construct a pseudo-dual graph of the
road network, where road segments become the nodes, the
turns between two consecutive road segments become the
edges, which are assigned turn costs. Then, finding the sim-
plest route reduces to finding the shortest path on the trans-
formed graph. In contrast, the recent work of [10] solves the
simplest route problem directly on the road network. Note
that Problem 1 differs with respect to the simplest route
problem, as it request a specific simplest route, that with
the smallest length. The aforementioned methods return
any simplest route.
To the best of our knowledge, only the work in [13] ad-

dresses Problem 1, as it proposes a solution that first finds
all simplest routes and then selects the fastest among them.
The proposed method serves as a baseline approach to our
solution for Problem 1 and is detailed in Section 3.1.

Problems 3 and 4 are related to the problem of finding the
near-shortest paths on graphs [4, 15]. This paper differs with
that line of work in two ways. First, the studied problems
involve two cost metrics, length and complexity. Second,
their solution is a single route, instead of all possible near-
optimal routes.

Problems 3 and 4 are also related to multi-objective short-
est path problems (see e.g., [18, 14]), which specify more
than one criteria and may return sub-optimal routes. This
paper differs with that line of work again in two ways. First,
they request a single route. Second, the studied problems
introduce a hard constraint on the length or complexity of a
solution. Nonetheless, an interesting extension to our work
would be to return all routes that capture different length-
complexity trade-offs.

3. FASTEST SIMPLEST ROUTE
This section discusses Problem 1, and introduces an al-

gorithm that takes advantage of the principle of sub-route
optimality to expedite the search. Solving Problem 2 is sim-
ilar, and thus details are omitted. We first present a recent
baseline solution in Section 3.1, and then discuss our ap-
proach in Section 3.2.

3.1 Baseline Solution
The work in [13] was the first to address the fact that

there can exist multiple simplest routes with greatly varying
length, and proposes a solution to finding the fastest among
them. This method, which we denote as BSL, operates on
a graph that models the intersections of the roads in R.

Definition 2. The intersection graph of R is the undirected
graph GI(R, I), where R is the set of roads; and I ⊆ R ×
R × V contains intersection (nx, ri, rj) if ri ∈ R(nx) and
rj ∈ R(nx), i.e., node nx belongs to both roads ri and rj .

A path on the intersection graph, i.e., a sequence of R
vertices such that there exists an intersection in I for any
two consecutive vertices in the sequence, is called a road
sequence.

BSL finds the fastest simplest route from a source node
ns to a target node nt. It is based on the observation that a
simplest route from ns to nt in the road network is related to
a shortest road sequence from a road that contains ns to one
that contains nt in the intersection graph. More precisely,
BSL operates as follows.

1. For each source road in R(ns), find the number of inter-
sections of the shortest road sequence from that source
to any of the target roads in R(nt), e.g., using a single-
source shortest path algorithm on the intersection graph.

2. Determine the smallest number of intersections among
those found in the previous step. This number corre-
sponds to the fewest possible intersections in a road se-
quence that starts from a source and ends at a target
road, and is thus equal to the complexity of the simplest
route from ns to nt plus 1.

3. Enumerate (e.g., using depth-limited dfs) all road se-
quences from a source to a target road that have exactly

as many intersections as the number determined in the
previous step. For each road sequence produced, convert
it to a route and determine its length.

4. Select the route with the minimum length, i.e., the fastest,
among those produced in the previous step.

3.2 The FastestSimplest Algorithm
The proposed algorithm operates directly on the road net-

work. However, a direct application of a Dijkstra-like (label-
setting [7]) method is not possible, because the principle of
sub-route optimality does not hold. In particular, this prin-
ciple suggests that if node nx is in the fastest simplest route
from ns to nt then any fastest simplest sub-route from ns

to nx can be extended to a fastest simplest route from nx to
nt. In comparison, it is easy to see that the principle holds
for fastest route (shortest paths), as all fastest sub-routes
can be extended to fastest routes.
We give a counter-example for the principle of optimality

on fastest simplest routes using the road network of Figure 1.
Consider the routes ρ2 = (ns, n6, n8, n11, n10, nt) and ρ5 =
(ns, n7, n11, n10, nt). The sub-route ρ′5 = (ns, n7, n11) of ρ5
has length 20 and complexity 1, as it involves a single turn
from road rf to rc via node n7. Similarly, the sub-route
ρ′2 = (ns, n6, n8, n11) of ρ2 has length 20 and complexity
1, as it involves a single turn from rf to ra via node n6.
Therefore, both sub-routes are fastest simplest from ns to
n11. However, the extension of ρ′5 does not give a fastest
simplest route from ns to nt; ρ5 makes an additional turn
at node n11 compared to ρ2. This violates the principle of
optimality for fastest simplest routes.
Therefore, a Dijkstra-like method, which directly exploits

this principle of optimality, cannot be applied. For instance,
such a method could reach n11 first via rc and subsequently
ignore any other path reaching n11, including the sub-route
via ra, and thus missing the optimal route from ns to nt.
To address the aforementioned lack of sub-route optimal-

ity, we construct a conceptual expanded graph, on which
the principle optimality holds. Additionally, we show that
expanded routes on this graph are uniquely associated with
routes on the road network. We emphasize that the ex-
panded graph is only a conceptual structure used for pre-
sentation purposes, and that the proposed algorithm does
not make use of it as it operates directly on the road net-
work.

Definition 3. The expanded graph of GR(V,E) is the di-
rected graph GE(V

′, E′), where V ′ ⊆ V × R contains an
expanded node (nx, ri) if ri ∈ R(nx); E

′ ⊆ V ′ × V ′ contains
an edge ((nx, ri), (ny, rj)) if ri ∈ R(nx) and rj ∈ R(nx) (ri
and rj could be the same road), and additionally nx, ny are
consecutive nodes in rj.

An expanded route ρE = ((na, ri), (nb, rj), . . .) is a path
on the expanded graph GE . Each expanded edge can be
associated with a length and a turn cost. Therefore, it is
possible to define the following costs for an expanded route.
The length L(ρE) of an expanded route ρE is the sum of

the lengths associated with each expanded edge; formally,

L(ρE) =
∑

((nx,ri),(ny,rj))∈ρE

L(nx, ny). (3)

Similarly, the complexity C(ρE) of an expanded route ρE
is the sum of the turn costs associated with each expanded

edge; formally,

C(ρE) =
∑

((nx,ri),(ny ,rj))∈ρE

C(nx, ri, rj). (4)

An important property regarding the length and complex-
ity of an expanded route is the following. Note that a similar
propery does not generally hold for routes on the road net-
work GR.

Lemma 1. Let ρ1E be an expanded route from (ns, ri) to
(nx, ry), and ρ2E be an expanded route from (nx, ry) to (nt, rj).
If ρ1Eρ

2
E denotes the concatenation of the two expanded routes,

then, it holds that L(ρ1Eρ
2
E) = L(ρ1E)+L(ρ2E), and C(ρ1Eρ

2
E) =

C(ρ1E) + C(ρ2E).

Proof. The proof follows because both the length and com-
plexity functions are defined independently for each expanded
edge of an expanded route.

It should be apparent that expanded routes are closely
related with (non-expanded) routes. First, let us examine
the GR to GE relationship, which is one to many.

We associate a route ρ from ns to nt on the road network
GR to a set E(ρ) of expanded routes on GE , which only
differ in their first and last expanded nodes. Particularly,
for an expanded route ρE ∈ E(ρ), its first expanded node is
(ns, ri), where ri ∈ R(ns), the last expanded node is (nt, rj),
where rj ∈ R(nt), and the k-th expanded node (for k > 1)
is (nk, R(nk−1, nk)), where nk−1, nk are the (k−1)-th, k-th
nodes in ρ, respectively, and R(nk−1, nk) is the unique road
that contains the edge (nk−1, nk). Conversely, an expanded
route ρE is associated with a unique route ρ.

Given a route ρ, we define the special expanded route of
ρ, denoted as ρ∗E , to be the expanded route in E(ρ) that has
(ns, R(ns, ns+1)) as its first expanded node, and (nt, R(nt−1, nt))
as its last expanded node, where ns+1 is the second node
in route ρ, R(ns, ns+1) is the unique road containing edge
(ns, ns+1), nt−1 is the second-to-last node in route ρ, and
R(nt−1, nt) is the unique road containing edge (nt−1, nt).

An even more important property is the following.

Lemma 2. The length of a route ρ is equal to the length
of any expanded route ρE ∈ E(ρ). The complexity of a route
ρ is equal to the complexity of the special expanded route
ρ∗E ∈ E(ρ).

Proof. For convenience, assume that ρ = (n1, n2, . . . , nt).

Then, the length of the route is L(ρ) =

t−1∑
k=1

L(nk, nk+1), and

its complexity is C(ρ) =

t−1∑
k=2

C(nk, R(nk−1, nk), R(nk, nk+1)).

An expanded route of ρ is

ρE = ((n1, rs), . . . , (nk, R(nk−1, nk)), . . . , (nt, re)),

where rs ∈ R(n1) and re ∈ R(nt). Observe that the length
of an expanded route is L(ρE) =

∑t−1
k=1 L(nk, nk+1), which

is equal to L(ρ). Hence, the first part of the lemma holds.
The special expanded route of ρ is ρ∗E =

((n1, R(n1, n2)), . . . , (nk, R(nk−1, nk)), . . . , (nt, R(nt−1, nt))).

The complexity of the special expanded route is

C(ρ∗E) = C(n1, R(n1, n2), R(n1, n2))

+

t−1∑
k=2

C(nk, R(nk−1, nk), R(nk, nk+1))

= 0 + C(ρ),

where the first term is zero because the turn cost on the
same road is zero. Hence the second part of the lemma also
holds.

Next, let us examine the GE to GR relationship, which
is many to one. We associate an expanded route ρE from
(ns, ri) to (nt, rj) to a unique route ρ = E−1(ρE) from ns

to nt on GR, such that the k-th node (for any k) of ρ is nk,
where (nk, rx) is the k-th expanded node of ρE .

Lemma 3. The length of an expanded route ρE is equal
to the length of the route ρ = E−1(ρE). The complexity of
a route ρE is not smaller than the complexity of the route
ρ = E−1(ρE).

Proof. For convenience, assume that the expanded route
is ρE = ((n1, r1), (n2, r2), . . . , (nt, rt)). Then, its length is

L(ρE) =

t−1∑
k=1

L(nk, nk+1), and its complexity is C(ρE) =

t−1∑
k=1

C(nk, rk, rk+1).

The route on GR is ρ = E−1(ρE) = (n1, n2, . . . , nt), and

has length L(ρ) =

t−1∑
k=1

L(nk, nk+1) = L(ρE), which proves

the first part of the lemma.
The complexity of the non expanded route ρ is

C(ρ) =

t−1∑
k=2

C(nk, R(nk−1, nk), R(nk, nk+1))

=

t−1∑
k=2

C(nk, rk, rk+1)

=

t−1∑
k=1

C(nk, rk, rk+1)− C(n1, r1, r2)

=C(ρE)− C(n1, r1, r2) ≤ C(ρE),

since R(nk−1, nk) = rk and R(nk, nk+1) = rk+1, which
proves the second part of the lemma.

We next introduce a lexicographic total order, which ap-
plies to routes or expanded routes. Note that in this section,
we use this order exclusively for expanded routes. Given two
routes ρ1, ρ2, we say that ρ1 is FS-shorter than ρ2 and de-
note as ρ1 <FS ρ2 if C(ρ1) < C(ρ1) or if C(ρ1) = C(ρ1) and
L(ρ1) < L(ρ1). Intuitively, being FS-shorter implies being
simpler or as simple but faster.
The following theorem presents an important property re-

garding this order on expanded routes.

Theorem 1. Let ρFS be a fastest simplest route on GR from
ns to nt, and let ρFS∗

E denote its special expanded route. It
holds that there exists no other expanded route that starts
from (ns, ri) and ends at (nt, rj), for any ri ∈ R(ns) and
rj ∈ R(nt) that is FS-shorter than ρFS∗

E .

Proof. We prove by contradiction. Suppose there exists an
expanded route ρ′E from (ns, ri) to (nt, rj), for some ri ∈
R(ns) and rj ∈ R(nt), such that it is FS-shorter than ρFS∗

E .
Therefore, one of the two conditions are true:

C(ρ′E) < C(ρFS∗
E), or (5)

C(ρ′E) = C(ρFS∗
E) and L(ρ′E) < L(ρFS∗

E). (6)

Consider the route ρ′ = E−1(ρ′E). From Lemma 3, we have
that L(ρ′) = L(ρ′E) and C(ρ′) ≤ C(ρ′E). Moreover, since
ρFS∗
E is the special expanded route of ρFS , we have from

Lemma 2 that L(ρFS∗
E) = L(ρFS) and C(ρFS∗

E) = C(ρFS).
Using these relationships, the two conditions become

C(ρ′) < C(ρFS), or (7)

C(ρ′) = C(ρFS) and L(ρ′) < L(ρFS), (8)

which imply that ρ′ is either simpler than ρFS or as sim-
ple but faster. Therefore, ρFS cannot be a fastest simplest
route, which is a contradiction.

Theorem 1 implies that to find a fastest simplest route on
GR, it suffices to find a FS-shortest expanded route on GE .

The following theorem shows that a principle of optimality
holds for FS-shortest expanded routes on GE .

Theorem 2. Let ρE denote an FS-shortest expanded route
from (ns, ri) to (nt, rj) that passes through (nx, ry). Further-
more, let ρ1E denote its sub-route from (ns, ri) to (nx, ry),
and ρ2E its sub-route from (nx, ry) to (nt, rj). It holds that

both ρ1E and ρ2E are FS-shortest. Moreover, if ρ1
′

E is an-
other FS-shortest expanded route from (ns, ri) to (nx, ry),

then ρ1
′

E ρ2E is an FS-shortest expanded route from (ns, ri) to
(nt, rj).

Proof. Suppose ρ1E is not an FS-shortest expanded route
from (ns, ri) to (nx, ry). Then there exists another expanded
route, say ρ1∗E , that is FS-shorter. From Lemma 1, it is easy
to see that ρ1∗E ρ2E is FS-shorter than ρE , which is a contradic-
tion as the latter is FS-shortest. A similar argument holds
for ρ2E . Hence the first part of the theorem is proved.

Regarding expanded route ρ1
′

E , observe that since it is FS-
shortest it has the same length and complexity with ρ1E .

Then by Lemma 1, ρ1
′

E ρ2E has the same length and complex-
ity with ρE . Therefore, it has to be also FS-shortest, which
proves the second part of the theorem.

The key point in Theorem 2 is that it holds for any ex-
panded route on GE . In contrast, this does not hold for
routes on the road network GR, as we have argued in the
beginning of this section.

Given Theorem 2, we can apply a Dijkstra’s algorithm,
or any variant, to find the FS-shortest expanded route on
GE . Then, from Theorem 1, we immediately obtain a fastest
simplest route on GR.

In what follows, we present the FastestSimplest (FS) al-
gorithm, a label- setting method (a generalization of Dijk-
stra’s algorithm) for finding a fastest simplest route on GR,
which operates directly on the road network and constructs
directly routes, instead of expanded routes.

The pseudocode of the FS algorithm is depicted in Algo-
rithm 1. Although FS operates on the road network GR,
it updates labels for expanded nodes. A label λ(n, r) for

expanded node (n, r) is equal to ⟨n, r|len, cpl, nprev, rprev⟩
and represents an expanded route from (ns, ri), for some
ri ∈ R(ns), up to (n, r). In particular, len, cpl are the length
and complexity of this expanded route, while (nprev, rprev) is
the second-to-last expanded node. Note that this expanded
route is FS-shortest only when it is explicitly marked as fi-
nal.
FS uses a minheap H to guide the search, visiting nodes of

GR. An entry ofH is a label, and its key is the label’s length,
complexity pair (len, cpl). Labels in H are ordered using
the FS-shorter total order. At each iteration, FS deheaps a
label, marks it final and advances the search frontier.
For any road ri ∈ R(ns), the algorithm initializes the heap

with the label (ns, ri|0, 0, n∅, ri) (lines 1–3). The dummy
node n∅ signifies that ns is the first node in any route con-
structed.
The algorithm proceeds iteratively, deheaping labels until

the heap is depleted (line 4), or the label involving the target
is deheaped (line 7). Assume (nx, ri|len, cpl, nw, rh) is the
deheaped label (line 5). As explained before, this label is
finalized (line 6).
If the label does not involve the target, FS expands the

current route (represented by the deheaped label) consider-
ing each outgoing edge (nx, ny) of nx (line 8), and each road
rj that contains ny (line 9).
If the label λ(ny, rj) does not exist (line 10), its label is ini-

tialized with length equal to len plus the distance L(nx, ny)
of the outgoing edge, and with complexity equal to cpl plus
the complexity C(ny, ri, rj) of transitioning from road ri to
rj via node ny (lines 11 –12).
Otherwise, if label λ(ny, rj) exists but is not final (line

13), it is retrieved (line 14). The label will be updated if the
extension of the current expanded route is FS-shorter that
the one currently represented in the label (lines 15–17).
The fastest simplest route can be retrieved with standard

backtracking. We keep all deheaped labels, and then start-
ing from the label containing the target, we identify the
previous expanded node (from the information stored in the
label) and retrieve its label, until the source is reached.

Theorem 3. The FS algorithm correctly finds a fastest sim-
plest route from ns to nt.

Proof. We first show that FS finds a FS-shortest expanded
route, say ρFS

E , among those from any (ns, ri) to any (nt, rj),
where ri ∈ R(ns) and rj ∈ R(nt). Consider a virtual ex-
panded node (ns, r∅) that has outgoing edges to all (ns, ri)
for ri ∈ R(ns), with length and complexity set to 0. Ob-
serve that the FS algorithm uses a label-setting method
(Theorem 2) to find an FS-shortest expanded route from
(ns, r∅) to any expanded target node (nt, rj), where rj ∈
R(nt). This expanded route has length and complexity ex-
actly equal to ρFS

E .
By Theorem 1 ρFS

E is the special expanded route of a
fastest simplest route from ns to nt, which concludes the
proof.

Analysis. Let δ = maxn∈V |R(n)| denote the maximum de-
gree of the road network GR, i.e., the maximum number of
roads a node can belong to. Note that there exist not more
than δ|V | labels, i.e., (n, r) pairs. In the worst case, Fastest-
Simplest performs an enheap and deheap operation for each
label. Furthermore, in the worst case, FastestSimplest ex-
amines each edge δ times, one for each label of a node. For

Algorithm 1: FastestSimplest

Input: road network GR; function L; function C; source ns;
target nt

Output: length fsL and complexity fsC of fastest simplest
route from ns to nt

Variables: minheap H with entries ⟨n, r|len, cpl, nprev, rprev⟩,
keys (len, cpl), and compare function <FS

1 foreach ri that contains ns do
2 λ(ns, ri)← ⟨ns, ri|0, 0, n∅, ri⟩
3 enheap λ(ns, ri) in H

4 while H not empty do
5 ⟨nx, ri|len, cpl, nw, rh⟩ ← deheap
6 mark λ(nx, ri) as final
7 if nx is nt then break
8 else foreach edge (nx, ny) do
9 foreach road rj that contains ny do

10 if λ(ny, rj) does not exist then
11 λ(ny, rj)←

⟨ny, rj |len + L(nx, ny), cpl + C(ny, ri, rj), nx, ri⟩
12 enheap λ(ny, rj)

13 else if λ(ny, rj) is not final then
14 ⟨ny, rj |len′, cpl′, nu, rh⟩ ← λ(ny, rj)
15 if

(len + L(nx, ny), cpl + C(ny, ri, rj)) <FS (len′, cpl′)
then

16 λ(ny, rj)←
⟨ny, rj |len+L(nx, ny), cpl+C(ny, ri, rj), nx, ri⟩

17 update λ(ny, rj)

18

19 return (fsL, fsC)← (len, cpl)

each examination, it may update δ labels, in the worst case.
Therefore, there is a total of δ2|E| updates, in the worst
case. Assuming a Fibonacci heap, the time complexity of
FastestSimplest is O(δ2|E|+ δ|V | log |V |) amortized. More-
over, since the heap may contain an entry for each label, the
space complexity is O(δ|V |).
Discussion. Thanks to Theorem 2, the FS algorithm essen-
tially solves a shortest path problem defined on the expanded
graph directly on the road network. It is thus possible to
substitute the underlying basic label-setting method method
with a more efficient variant. Bi- directional search and all
graph preprocessing techniques, discussed in Section 2.2, are
compatible and can expedite the underlying method.

4. SIMPLEST NEAR-FASTEST ROUTE
This section studies Problem 4; the solution to Problem 2

is similar and details are omitted. Unlike the case of finding
the simplest fastest or the fastest simplest route, there can
exist no principle of optimality, exactly because the solution
to Problem 4 is not an optimal route for any definition of
optimality. Therefore, one has to enumerate all routes from
source to target, and rely on bounds and pruning criteria
to eliminate sub-routes that cannot be extended to simplest
near-fastest route.

We propose two algorithms, which differ in the way they
enumerate paths. The first, detailed in Section 4.1, is based
on depth-first search, while the second, detailed in Section 4.2,
is inspired by A∗ search.

4.1 DFS-based Traversal
This section details the SimplestNearFastest-DFS (SNF-

DFS) algorithm for finding the simplest near-fastest route.
Its key idea is to enumerate all routes from source to target
by performing a depth-first search, eliminating in the process
routes which are longer than (1+ϵ) times the fastest (similar

to the algorithm of [4] for near-fastest routes), or have larger
complexity than the best found so far.
SNF-DFS requires information about the simplest fastest

as well as the fastest simplest path from any node to the
target. To obtain this information, it invokes two procedures
AllFastestSimplest and AllSimplestFastest.
The AllFastestSimplest procedure is a variation of the

FastestSimplest algorithm (Section 3) that solves the single-
source fastest simplest route problem, i.e., it computes the
length and complexity of the fastest simplest route from a
given source to any other node. Only a small change to the
original algorithm is necessary. Recall that when deheaping
a label λ(nx, ri), it is marked as final. Observe that when the
first label associated with nx is deheaped, the algorithm has
found the fastest simplest path from ns to nx. (This was in
fact the termination condition of Algorithm 1: stop when a
label associated with the target is deheaped.) Therefore, the
AllFastestSimplest procedure explicitly marks nx as visited
at its first encounter, and stores the length and complexity
of the current path. The procedure only terminates when
the heap empties.
The AllSimplestFastest procedure is derived from the Sim-

plestFastest algorithm in the same way that AllFastestSim-
plest is from FastestSimplest, and thus details are omitted.
Note that there arises a small implementation detail. Re-

call that the SNF-DFS algorithm requires the costs all fastest
simplest routes ending at a particular node (the target),
whereas AllFastestSimplest returns the costs of all fastest
simplest routes starting from a particular node. Therefore,
to obtain the appropriate info, SNF-DFS invokes the All-
FastestSimplest procedure using a graph obtained from GR

by inverting the direction of its edges. The same holds for
the invokation of the AllSimplestFastest procedure.
In the following, we assume that the length fsL[] and com-

plexity fsC[] of all fastest simplest routes to the target nt,
and the length sfL[] and complexity sfC[] of all simplest
fastest routes to nt, are given.
The SNF-DFS algorithm applies two pruning criteria to

avoid examining all routes from ns to nt.

Lemma 4. Let ρ be a route from ns to nx. If L(ρ) +
sfL[nx] > (1 + ϵ) · sfL[ns], then any extension of ρ towards
nt is not a simplest near-fastest route.

Proof. Any extension of ρ towards nt must have length at
least L(ρ) + sfL[nx], since sfL[nx] is the shortest length of
any route from nx to nt. Therefore, the condition of the
lemma implies that no extension of ρ is near-fastest, hence
neither simplest near-fastest.

Lemma 5. Let ρ be a route from ns to nx. Further, let
snfC+ be an upper bound on the complexity of a simplest
near-fastest route from ns to nt. If C(ρ)+ fsC[nx] > snfC+,
then any extension of ρ towards nt is not a simplest near-
fastest route.

Proof. Any extension of ρ towards nt must have complexity
at least C(ρ)+sfC[nx], since sfC[nx] is the lowest complexity
of any route from nx to nt. Therefore, the condition of the
lemma implies that no extension of ρ has better complexity
that an upper bound on the complexity of the simplest near-
fastest route, hence cannot be simplest near- fastest.

The next lemma computes an upper bound of the com-
plexity of a simplest near-fastest route.

Lemma 6. Let ρ be a route from ns to nx. If L(ρ) +
fsL[nx] ≤ (1+ϵ) ·sfL[ns], then snfC+ = C(ρ)+1+ fsC[nx] is
an upper bound on the complexity of a simplest near-fastest
route.

Proof. Consider a simplest extension ρ′ of ρ towards nt, i.e.,
it has the lowest possible complexity. Observe that its length
is L(ρ′) = L(ρ)+ fsL[nx]. Hence the condition of the lemma
implies that ρ′ is a near-fastest route. So, its complexity is
an upper bound on the complexity of a simplest near-fastest
route.

We next show that the complexity of ρ′ is at most C(ρ)+
1 + fsC[nx], which will conclude the proof. Let ny be the
node following nx in ρ′, and nw be the node preceding
nx in ρ. Then, the complexity of ρ′ is C(ρ′) = C(ρ) +
C(nx, R(nw, nx), R(nx, ny)) + fsC[nx]. Since the turn cost
C(nx, R(nw, nx), R(nx, ny)) is bounded by 1, any simplest
extension of ρ towards nt has complexity at most C(ρ)+1+
fsC[nx], which in turn is an upper bound on the complexity
of a simplest near-fastest route.

We are now ready to describe in detail the SNF-DFS al-
gorithm, whose pseudocode is shown in Algorithm 2. It per-
forms a depth-first search on the road network, eliminating
routes according to the two criteria described previously, and
computing an upper bound for the complexity of the fastest
near-simplest route.

SNF-DFS uses a stack S to implement depth-first search.
At each point in time, the entries in the stack S form exactly
a single route starting from ns. An entry of S has the form
⟨n|len, cpl, nprev⟩, and corresponds to a route ending at node
n with length len, complexity cpl and whose second-to-last
node is nprev.

SNF-DFS marks certain nodes as in_route, and certain
edges as traversed. Particularly, a node is marked as in_route
if an entry for this node is currently in the stack. This mark-
ing helps avoid cycles in routes. An edge (na, nb) is marked
as traversed if an entry for na is in the stack (not necessar-
ily the last), whereas an entry for nb is not in S, but was at
some previous iteration right above the entry for na. This
marking helps avoid revisiting routes.

Initially, SNF-DFS invokes the AllSimplestFastest and All-
FastestSimplest procedures (lines 1–2). Then, if the fastest
simplest route from ns to nt is near-shortest, i.e., has length
less than (1 + ϵ) · sfL[ns], then it is not only a candidate
route but actually the solution, as there can be no other
route with lowest complexity. Hence, SNF-DFS terminates
(lines 3–4).

Otherwise, a candidate route is the fastest simplest route,
which is definitely near-fastest. Therefore, an upper bound
on complexity is computed as snfC+ = sfC[ns] (line 5). The
stack is initialized with an entry for the source node ns (line
6). Then SNF-DFS proceeds iteratively until the stack is
empty (line 7).

At each iteration the top entry of the stack is examined
(but not popped) (line 8). Let this entry be for node nx

and correspond to a route ρ. If node nx is not marked as
in_route although it is at the top of the stack, this means
that this is the first time SNF-DFS encounters it (line 9).
For this first encounter, the algorithm applies the pruning
criterion of Lemma 5. If it holds (line 10) then no route that
extends ρ will be examined, and hence the entry is popped
from the stack.

Otherwise, if nx is the target (lines 11–13), ρ constitutes
a candidate solution and its complexity is compared against
the best known (line 12). Subsequently, the entry is popped,
as there is no need to extend the current route ρ any farther.
If the entry is not popped, node nx is marked as in_route.
If node nx is not in_route, SNF-DFS looks for an outgo-

ing edge (nx, ny) such that it is not traversed and ny is not
in_route (line 16). If no such edge is found, then all routes,
with no cycles, that extend ρ have been either considered or
pruned. Hence the top entry of the stack is popped (line 18),
and nx is marked as not in_route (line 19). Additionally,
all outgoind edges of nx are marked as not traversed (lines
20–21).
Otherwise, such an outgoing edge (nx, ny) is found. Then,

the algorithm checks if the two pruning criteria (Lemmas 4,
5) apply (line 22). If either does, then the edge (nx, ny) is
marked as traversed (line 27). Otherwise (lines 23– 26),
the algorithm checks if Lemma 6 applies, and appropriately
updates the complexity bound snfC+ if necessary (line 24).
Finally, SNF-DFS creates an entry for node ny and pushes it
in the stack (line 25), while marking (nx, ny) as traversed
(line 26).
The actual simplest near-fastest route can be retrieved

with standard backtracking; details are omitted.

Theorem 4. The SNF-DFS algorithm correctly finds a sim-
plest near-fastest route from ns to nt.

Proof. We first show that if the pruning criteria were not
applied, the algorithm would enumerate all possible routes
from ns to nt. This is true, because SNF-DFS would per-
form a depth-first traversal constructing each time an acyclic
route consisting of possibly all edges until nt is reached (line
11). The marking on edges guarantees that when the al-
gorithm backtracks (performs a pop operation), a different
route is followed. Eventually, when the stack empties the
algorithm would have constructed all routes from ns to nt.
We finally argue that all pruned routes cannot be sub-

routes of a simplest near-fastest route. This holds because
pruning is performed based on Lemmas 4 and 5, and the
bound of Lemma 6.

Analysis. The complexities of AllSimplestFastest and All-
FastestSimplest are the same as those of SimplestFastest and
FastestSimplest, respectively, namely O(δ2|E|+δ|V | log |V |)
amortized time and O(δ|V |) space.
Let L(ρSF) denote the length of the fastest route, and ∆d

the smallest distance of any edge. At any time the stack
of SimplestNearFastest corresponds to a sub-route of some
near-fastest route. The number of edges in a near-fastest
route can be at most (1+ ϵ)L(ρSF)/∆d (but not more than
|E|). Therefore, the space complexity of the road network
traversal is O((1 + ϵ)L(ρSF)/∆d) = O(|E|), since at each
time a single route is maintained in the stack.
In the worst case, the traversal may examine all possible

routes from ns to nt having (1 + ϵ)L(ρSF)/∆d edges. The

number of such routes is k =
(|E|
(1+ϵ)L(ρSF)/∆d

)
; in practice

this is a much smaller number. The number of push or pop
operations is in the worst case equal to the total length of
all possible near-fastest routes from source to target. Since
there can be k such routes, the time complexity is O(k(1 +
ϵ)L(ρSF)/∆d).
Overall, the time complexity of SNF-DFS is O(δ2|E| +

δ|V | log |V |+k(1+ ϵ)L(ρSF)/∆d) amortized, while its space

Algorithm 2: SimplestNearFastest-DFS

Input: road network GR; mapping C; source ns; target nt;
value ϵ

Output: length snfL and complexity snfC of simplest
near-fastest route from ns to nt

Variables: stack S with entries ⟨n|len, cpl, nprev⟩
1 (sfL[], sfC[])← AllSimplestFastest(GR, C, nt)
2 (fsL[], fsC[])← AllFastestSimplest(GR, C, nt)
3 if fsL[ns] ≤ (1 + ϵ) · sfL[ns] then
4 return (snfL, snfC)← (fsL[ns], fsC[ns])

5 (snfL+, snfC+)← (sfL[ns], sfC[ns])
6 push (ns|0, 0, n∅)
7 while S not empty do
8 ⟨nx|len, cpl, nw⟩ ← top
9 if nx not in_route then

10 if cpl + fsC[nx] > snfC+ then pop
11 else if nx is nt then
12 if cpl < snfC+ then (snfL+, snfC+)← (len, cpl)
13 pop

14 else mark nx as in_route

15 else
16 find an outgoing edge (nx, ny) that is not traversed and

ny is not in_route
17 if no such edge is found then
18 pop
19 mark nx as not in_route
20 foreach outgoing edge (nx, ny) do
21 mark (nx, ny) as not traversed

22 else if len + L(nx, ny) + sfL[ny] ≤ (1+ϵ)·sfL[ns] and

cpl + C(ewx, exy, nx) + fsC[ny] < snfC+ then
23 if len + L(nx, ny) + fsL[ny] ≤ (1+ϵ)·sfL[ns] then
24 (snfL+, snfC+)← (len + L(nx, ny) + fsL[ny], cpl +

C(ewx, exy, nx) + 1 + fsC[ny])

25 push ⟨ny|len + L(nx, ny), cpl + C(ewx, exy, nx), nx⟩
26 mark (nx, ny) as traversed

27 else mark (nx, ny) as traversed
28

29 return (snfL, snfC)← (snfL+, snfC+)

complexity is O(δ|V |+ (1 + ϵ)L(ρSF)/∆d).

Discussion. The running time of SNF-DFS depends on
large part on the two procedures AllSimplestFastest and All-
FastestSimplest. In the following, we discuss a variant of the
algorithm that does not invoke these procedures. The key
idea is to relax the requirement for explicit calculation of
the length and complexity of all simplest fastest and fastest
simplest routes, and instead require a method for calculat-
ing their lower and upper bounds. Such a method can be
straightforwardly adapted from landmark-based techniques,
e.g., [11]. Note that in the extreme case, no bounds are nec-
essary. Clearly, the pruning criteria of Lemmas 4 and 5 can
be straightforwardly adapted to use bounds instead; note
that their pruning power is reduced. Similarly, Lemma 6
can also be adapted, which results however in a less tight
upper bound. Details are omitted.

4.2 A∗-based Traversal
This section describes the SimplestNearFastest-A∗ (SNF-

A∗) algorithm for finding a simplest near-fastest route, which
is inspired by A∗ search. The key idea is to use bounds on
the complexity in order to guide the search towards the sim-
plest among the near-fastest routes.

Similar to the dfs-like algorithm, SNF-A∗ applies Lem-
mas 4, 5 to prune unpromising routes, and Lemma 6 to
compute an upper bound on the complexity of a simplest
near-fastest route. On the other hand, contrary to the dfs-
like algorithm, SNF-A∗ terminates when it enounters the

target node for the first time, because it can guarantee that
all unexamined routes have more complexity.
The SNF-A∗ algorithm uses a heap to guide the search,

containing node labels. An important difference with re-
spect to the methods of Section 3, is that to guarantee cor-
rectness, there may be multiple labels per node, each corre-
sponding to different routes from the source to that node.
The reason is that there is no principle of optimality for
near-fastest routes. Still, labels belonging to certain routes
can be eliminated, as the following lemma suggests.

Lemma 7. Let ρ, ρ′ be two routes from ns to nx. If L(ρ′) >
L(ρ) and C(ρ′) > C(ρ)+ 1, then ρ′ cannot be a sub-route of
a simplest near-fastest route from ns to any nt.

Proof. Let nw (resp. nw′) be the second-to-last node of
route ρ (resp. ρ′). We prove by contradiction. Assume that

ρ′ is a sub-route of a simplest near-fastest route ρFS′
. Let ρx

be the sub-route of ρFS′
starting from node nx and ending at

nt, an let ny be its second node, after nx. Then, L(ρ
FS′

) =

L(ρ′)+L(ρx), and C(ρFS′
) = C(ρ′)+C(nx, R(nw′ , nx), R(nx, ny))+

C(ρx). Since in the best case, a turn cost can be zero, we

have that C(ρFS′
) ≥ C(ρ′) + C(ρx).

Now consider route ρFS = ρρx, where L(ρFS) = L(ρ) +
L(ρx), and C(ρFS) = C(ρ) +C(nx, R(nw, nx), R(nx, ny)) +
C(ρx). Since in the worst case, a turn cost can be one, we
have that C(ρFS) ≤ C(ρ)+1+C(ρx). From the conditions of

the lemma, we derive that L(ρFS) < L(ρFS′
) and C(ρFS) <

C(ρFS′
). This implies that ρFS is near-fastest, as it has

length less than a near-fastest route. Moreover, it has less

complexity than ρFS′
, which is a contradiction as ρFS′

is
simplest near-fastest.

The set of labels for a node nx is denoted by Λ(nx). Let
λ (resp. λ′) be the label corresponding to a route ρ (resp.
ρ′) ending at node nx. If the conditions of Lemma 7 hold
for ρ and ρ′, we write λ ≺ λ′. Clearly, there is no need to
keep a label λ′ ∈ Λ(nx) if there is another label λ ∈ Λ(nx)
such that λ ≺ λ′.
An important difference to the label-setting method for

Problem 1 is that a heap entry (label) ⟨n|len, cpl, nprev⟩ in
SNF-A∗ is sorted according to the FS-shorter total order (see
Section 3) on pair (len+ fsL[n], cpl+ fsC[n]), as it would in
A∗ search.
The pseudocode of SNF-A∗ is shown in Algorithm 3. Ini-

tially, it invokes the AllSimplestFastest and AllFastestSim-
plest procedures to obtain arrays fsL[], fsC[], sfL[], and
sfC[] (lines 1–2). Subsequently, if the fastest simplest route
from ns to nt is near-shortest, it is the solution, and hence,
SNF-DFS terminates (lines 3–4). Otherwise, a candidate
route is the fastest simplest route, which is definitely near-
fastest. Therefore, an upper bound on complexity is com-
puted as snfC+ = sfC[ns] (line 5).
The heap is initialized with an entry for the source node

ns (line 6). Then SNF-A∗ proceeds iteratively until the heap
is empty (line 7). Let ⟨nx|len, cpl, nw⟩ be the deheaped label
at some iteration (line 8). If nx is the target, the algorithm
terminates (lines 9–11). The reason is that because of the
order in the heap, all remaining labels correspond to routes,
which when extended via the simplest route to the target,
have larger complexity. Hence, Lemma 5 applies to them.
If nx is not the target, each outgoing edge (nx, ny) is ex-

amined (line 12), and a label λ for the route to ny is created

Algorithm 3: SimplestNearFastest-A∗

Input: road network GR; mapping C; source ns; target nt;
value ϵ

Output: length snfL and complexity snfC of simplest
near-fastest route from ns to nt

Variables: minheap H with entries ⟨n|len, cpl, nprev⟩, keys
(len+fsL[n], cpl+fsC[n]), compare function <FS

1 (sfL[], sfC[])← AllSimplestFastest(GR, C, nt)
2 (fsL[], fsC[])← AllFastestSimplest(GR, C, nt)
3 if fsL[ns] ≤ (1 + ϵ) · sfL[ns] then
4 return (snfL, snfC)← (fsL[ns], fsC[ns])

5 (snfL+, snfC+)← (sfL[ns], sfC[ns])
6 enheap ⟨ns|0, 0, n∅⟩ in H
7 while H not empty do
8 ⟨nx|len, cpl, nw⟩ ← deheap
9 if nx is nt then

10 (snfL+, snfC+)← (len, cpl)
11 break

12 else foreach edge (nx, ny) do
13 λ← ⟨ny|len + L(nx, ny), cpl + C(ewx, exy, nx), nx⟩
14 pruned← false

15 foreach entry λ′ ∈ Λ(ny) do
16 if λ ≺ λ′ then remove λ′

17 else if λ′ ≺ λ then pruned← true

18 if not pruned and
len + L(nx, ny) + sfL[ny] ≤ (1+ϵ)·sfL[ns] and

cpl + C(ewx, exy, nx) + fsC[ny] < snfC+ then
19 if len + L(nx, ny) + fsL[ny] ≤ (1+ϵ)·sfL[ns] then
20 (snfL+, snfC+)← (len + L(nx, ny) + fsL[ny], cpl +

C(ewx, exy, nx) + 1 + fsC[ny])

21 enheap λ

22

23 return (snfL, snfC)← (snfL+, snfC+)

(line 13). Subsequently, each other label λ′ regarding node
ny is considered (lines 15–17). In particular, the algorithm
applies Lemma 7 for the routes of labels λ and λ′, removing
labels if necessary.

If the route for label λ survives, then the pruning criteria
of Lemmas 4 and 5 are applied (line 18). If the label still
survives, then Lemma 6 is applied to compute an upper
bound on the complexity of a solution (lines 19–20). Finally,
the surviving label λ is enheaped (line 21).

As before, the actual simplest near-fastest route can be
retrieved with standard backtracking; details are omitted.

Theorem 5. The SNF-A∗ algorithm correctly finds a sim-
plest near-fastest route from ns to nt.

Proof. We first show that if the pruning criteria and the ter-
mination condition were not applied, the algorithm would
enumerate all possible routes from ns. This is true because
when a label is deheaped for node nx, a route is identified,
which is subsequently extended by considering all the neigh-
bors of nx. Note that multiple labels for node nx might be
deheaped, corresponding to different routes, possibly with
cycles. The fact that the heap entries are sorted by the FS-
shorter order, i.e., primarily by complexity and secondarily
by length, and the fact that a route with cycles is always not
FS-shorter than its acyclic counterpart, ensures that the al-
gorithm does not fall into an endless loop traversing a cycle,
and will eventually examine all routes.

Next, we show that all pruned labels correspond to routes
that cannot be sub-routes of a simplest near-fastest route.
This is true, because pruning is performed based on Lem-
mas 4, 5 and 7 and the bound of Lemma 6.

Finally, we show that when SNF-A∗ terminates (line 11),

a simplest near-fastest route is identified. Let ρ denote the
route that corresponds to the deheaped label λ for the target
nt. Observe that ρ is near-fastest, because otherwise its label
λ would not be enheaped at line 21 (pruned by Lemmma 4).
We finally argue that ρ has the lowest complexity among all
near-fastest routes. This holds due to the FS-shorter order
of the heap. All other routes to nt have complexity not less
than ρ’s.

Analysis. AllSimplestFastest and AllFastestSimplest re-
quire O(δ2|E| + δ|V | log |V |) amortized time and O(δ|V |)
space. In the worst case, the algorithm may examine all

k =
(|E|
(1+ϵ)L(ρSF)/∆d

)
possible routes from ns to nt having at

most (1 + ϵ)L(ρSF)/∆d edges. Each node of the road net-
work may be assigned up to k labels, one per possible route.
The number of enheap and deheap operations equals the
number of labels k|V |. Furthermore, the number of update
operations is equal to k2 per edge, for a total of k2|E|. As-
suming a Fibonacci heap, the time complexity of the traver-
sal is O(k2|E|+k|V | log |V |) amortized. Moreover, since the
heap may contain an entry for each label, the space com-
plexity is O(k|V |). Overall, the time complexity of SNF-A∗

is O(δ2|E| + δ|V | log |V | + k2|E| + k|V | log |V |) amortized,
while its space complexity is O(δ|V |+ k|V |).
Discussion. Similarly to the case of SNF-DFS, the invoca-
tion of the AllSimplestFastest and AllFastestSimplest pro-
cedures is not necessary for SNF-A∗.

5. EXPERIMENTAL EVALUATION
This section, presents an experiment evaluation of our

methodology for Problems 1–4. Section 5.1 details the setup
of our analysis. Section 5.2 qualitatively compares the pro-
posed methods, and Section 5.3 studies the scalability.

5.1 Setup
Our experimental analysis involves both real and synthetic

road networks. We use the real road networks of the fol-
lowing cities taken from OpenStreetMap: Oldeburg (OLB),
Berlin (BER), Vienna (VIE) and Athens (ATH), contain-
ing 1, 672 roads and 2, 383 intersections, 15, 246 roads and
25, 321 intersections, 20, 224 roads and 27, 563 intersections,
and 76, 896 roads and 108, 156 intersections, respectively.
The weighted average degree of an intersection in these road
networks is 2.09, 2.15, 2.17 and 2.19, respectively.
To study the scalability of our methodology we also gen-

erated synthetic road networks by populating the OLB road
network. The idea is the following. In an attempt to capture
the structure of a real network, a synthetic road network is
defined as a set of neighborhoods connected to each other
through a backbone road network. OLB is used to capture

Figure 2: The OLB road network and its 24 en-
trances/exits.

(a) (b)
Figure 3: Examples of backbone networks: (a) grid-
based with 10 roads, (b) ring-based with 16 roads.

the internal road network of a neighborhood. Figure 2 pic-
tures the 24 intersections used to enter/exit the internal road
network of a neighborhood from/to the backbone.

Finally, to construct a backbone network we consider two
different topologies. The grid-based topology of degree τ is
constructed by 2τ roads, τ2 intersections, and defines (τ−1)2

neighborhoods. On the other hand, a ring-based topology of
degree τ is constructed by 4(τ + 1) roads, 4τ intersections,
and defines 4(τ − 1)+1 neighborhoods. Figure 3(a) and (b)
show an example of a grid-based and a ring-based backbone
road network of degrees 5, and 3, respectively. The grid-
based backbone consists of 10 roads connected through 25
intersections and defines 16 neighborhoods, while the ring-
based backbone consists of 16 roads connected through 12
intersections and defines 9 neighborhoods.

To assess the performance of the routing methods, we
measure their average response time and the average num-
ber of routes examined over 1, 000 queries. Finally, in case of
the simplest near-fastest and the fastest near-simplest route
problems, we test the methods varying ϵ inside {0.01, 0.05,
0.1, 0.2, 0.3}.

5.2 Comparison of Routing Methods
The first set of experiments involves the OLB, BER, VIE,

and ATH real road networks with the purpose of identifying
the best method for each of the problems at hand.

Table 2 demonstrates the results for the fastest simplest
and the simplest fastest route problems. We first observe
that FS outperforms BSL by several orders of magnitude.
In fact, we managed to execute BSL only on the smallest
road network (OLB) due to its extremely high response time.
This is expected as BSL needs to enumerate an enormous
number of routes to identify the final answer. On the other
hand, we observe that FS, SF identify the corresponding
routes in less than half a second for all real networks.

Finally, we investigate which is the best method for the
fastest near-simplest and the simplest near-fastest route prob-
lems. Note that for the purpose of this experiment we
include two additional methods termed FNS-A∗-WB and
SNF-A∗-WB. These algorithms follow the same principle as
FNS-A∗ and SNF-A∗ respectively, without however invoking
the AllFastestSimplest and AllSimplestFastest procedures
(equivalently they assume sfL[n] = sfC[n] = fsL[n] =
fsC[n] = 0 for any node n). In addition, note that be-
cause of their high response time, we were able to execute
FNS-DFS and SNF-DFS only on the smallest road network,
OLB. Figure 4 clearly shows that FNS-A∗ and SNF-A∗ are
the dominant methods for the problems at hand. In fact
with the exception of the smallest road network, OLB, they
outperform their competitors by at least one order of mag-
nitude. The superiority of FNS-A∗ (SNF-A∗) over FNS-A∗-
WB (SNF-A∗-WB) supports our decision to invoke the All-
FastestSimplest and AllSimplestFastest procedures before
the actual search takes place.

Table 2: Real road networks: performance analysis for solving Problems 1 and 2.

BSL FS SF
road Response Routes Response Routes Response Routes

network time (sec) examined time (sec) examined time (sec) examined

OLB 68.7 121, 236, 000 0.003 2286.82 0.003 2418.35
BER − − 0.055 27226.3 0.040 27611.7
VIE − − 0.057 29301.8 0.042 29250.8
ATH − − 0.346 117, 973 0.207 120, 329

We also observe that as ϵ increases, the response time of
the methods that solve simplest near-fastest route problem
decreases. Specifically, the response time of SNF-A∗-WB al-
ways decreases while the time of SNF-A∗ first increases and
after ϵ = 0.1 or ϵ = 0.2 it drops. Note that this trend is also
followed by the average number of routes examined by the
methods. The reason for is that the larger ϵ is, the more
routes have acceptable length and thus need to be exam-
ined. At the same time, however, it is more likely to early
identify a candidate answer, which can enhance the pruning
mechanism and thus accelerate the query evaluation.

5.3 Scalability Tests
In the last set of experiments we study the scalability of

the best methods identified in the previous section, i.e., FS,
SF, FNS-A∗ and SNF-A∗. For this purpose, we generate
synthetic road networks varying the degree of the topol-
ogy τ , and thus, the size of the road network. Particu-
larly, for a grid-based backbone network τ takes values inside
{2, 3, 4, 5}, while for a ring-based backbone inside {1, 2, 3, 4}.
Figure 5 reports on the scalability tests. As expected, the
response time of all methods increases when the degree of
the topology increases. Even for the expensive fastest near-
simplest and the simplest near-fastest route problems, our
methods always identify the answer in less than half a sec-
ond for ϵ = 0.1. Although we do not include figures for other
values of ϵ, our experiments show that this holds for every
other combination of τ and ϵ.

6. CONCLUSION
This paper dealt with finding routes that are as simple and

as fast as possible. In particular, it studied the fastest sim-
plest, simplest fastest, fastest near-simplest, and simplest
near-fastest problems, and introduced solutions to thems.
The proposed algorithms are shown to be efficient and prac-
tical in both real and synthetic datasets.

Acknowledgments. This research was partially supported
by the German Research Foundation (DFG) through the
Research Training Group METRIK, grant no. GRK 1324,
and the European Commission through the project “Simple-
Fleet”, grant no. FP7-ICT-2011-SME-DCL-296423.

7. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In Experimental Algorithms,
pages 230–241. Springer, 2011.

[2] R. Bauer and D. Delling. Sharc: Fast and robust
unidirectional routing. Journal of Experimental
Algorithmics (JEA), 14:4, 2009.

[3] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner. Combining hierarchical

and goal-directed speed-up techniques for dijkstra’s
algorithm. Journal of Experimental Algorithmics
(JEA), 15:2–3, 2010.

[4] T. H. Byers and M. S. Waterman. Determining all
optimal and near-optimal solutions when solving
shortest path problems by dynamic programming.
Operations Research, 32(6):1381–1384, 1984.

[5] T. Caldwell. On finding minimum routes in a network
with turn penalties. Communications of the ACM,
4(2):107–108, 1961.

[6] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F.
Werneck. Phast: Hardware-accelerated shortest path
trees. Journal of Parallel and Distributed Computing,
2012.

[7] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische mathematik, 1(1):269–271,
1959.

[8] M. Duckham and L. Kulik. “simplest” paths:
Automated route selection for navigation. In
Conference On Spatial Information Theory (COSIT),
pages 169–185, 2003.

[9] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In Experimental
Algorithms, pages 319–333. Springer, 2008.

[10] R. Geisberger and C. Vetter. Efficient routing in road
networks with turn costs. In Experimental Algorithms,
pages 100–111. Springer, 2011.

[11] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A search meets graph theory. In
Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 156–165.
Society for Industrial and Applied Mathematics, 2005.

[12] R. J. Gutman. Reach-based routing: A new approach
to shortest path algorithms optimized for road
networks. In ALENEX/ANALC, pages 100–111, 2004.

[13] B. Jiang and X. Liu. Computing the fewest-turn map
directions based on the connectivity of natural roads.
International Journal of Geographical Information
Science, 25(7):1069–1082, 2011.

[14] H.-P. Kriegel, M. Renz, and M. Schubert. Route
skyline queries: A multi-preference path planning
approach. In ICDE, pages 261–272, 2010.

[15] W. Matthew Carlyle and R. Kevin Wood.
Near-shortest and k-shortest simple paths. Networks,
46(2):98–109, 2005.

[16] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner,
and T. Willhalm. Partitioning graphs to speedup
dijkstra’s algorithm. Journal of Experimental
Algorithmics (JEA), 11:2–8, 2007.

[17] T. A. J. Nicholson. Finding the shortest route between
two points in a network. The Computer Journal,

 0.01

 0.1

 1

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
(s

ec
)

SNF-DFS
SNF-A*-WB

SNF-A*

 0.1

 1

 10

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
(s

ec
)

FNS-A*-WB
FNS-A*

 0.1

 1

 10

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
(s

ec
)

FNS-A*-WB
FNS-A*

 1

 10

 100

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
(s

ec
)

SNF-A*-WB
SNF-A*

ϵ ϵ ϵ ϵ
(a) OLB (b) BER (c) VIE (d) ATH

Figure 4: Real road networks: performance analysis for solving Problems 3 and 4.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

2 3 4 5

R
es

p
o

n
se

 t
im

e
(s

ec
)

SF
FS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2 3 4 5

R
es

p
o

n
se

 t
im

e
(s

ec
)

SNF-A*
FNS-A*

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

1 2 3 4

R
es

p
o

n
se

 t
im

e
(s

ec
)

SF
FS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 3 4

R
es

p
o

n
se

 t
im

e
(s

ec
)

SNF-A*
FNS-A*

τ τ τ τ
(a) grid-based (b) grid-based (c) ring-based (d) ring-based

Figure 5: Synthetic road networks: scalability tests for ϵ = 0.1.

9(3):275–280, 1966.

[18] A. Raith and M. Ehrgott. A comparison of solution
strategies for biobjective shortest path problems.
Computers & Operations Research, 36(4):1299–1331,
2009.

[19] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In Algorithms–Esa
2005, pages 568–579. Springer, 2005.

[20] F. Schulz, D. Wagner, and C. Zaroliagis. Using
multi-level graphs for timetable information in railway
systems. In ALENEX, pages 43–59. Springer, 2002.

[21] S. Winter. Modeling costs of turns in route planning.
GeoInformatica, 6(4):345–361, 2002.

