
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Evaluating Path Queries over Frequently
Updated Route Collections

Panagiotis Bouros, Member, IEEE , Dimitris Sacharidis, Member, IEEE ,
Theodore Dalamagas, Member, IEEE , Spiros Skiadopoulos, and Timos Sellis, Fellow, IEEE

Abstract—The recent advances in the infrastructure of Geographic Information Systems (GIS), and the proliferation of GPS technology,
have resulted in the abundance of geodata in the form of sequences of points of interest (POIs), waypoints etc. We refer to sets of
such sequences as route collections. In this work, we consider path queries on frequently updated route collections: given a route
collection and two points ns and nt, a path query returns a path, i.e., a sequence of points, that connects ns to nt. We introduce two
path query evaluation paradigms that enjoy the benefits of search algorithms (i.e., fast index maintenance) while utilizing transitivity
information to terminate the search sooner. Efficient indexing schemes and appropriate updating procedures are introduced. An
extensive experimental evaluation verifies the advantages of our methods compared to conventional graph-based search.

Index Terms—Route collections, path queries, frequent updates.

✦

1 INTRODUCTION

S EVERAL applications involve storing and querying
large volumes of data sequences. For instance, the

recent advances in the infrastructure of Geographic In-
formation Systems (GIS) and geodata services, and the
proliferation of GPS technology, have resulted in the
abundance of user or machine generated geodata in the
form of point of interest (POI) sequences. We refer to sets
of such sequences as route collections.

As an example, consider people visiting Athens, hav-
ing GPS-enabled devices to track their sightseeing and
create routes through interesting places. Figure 1 shows
two routes in Athens. The first, r1, starts from the National
Technical University of Athens and ends at the new Museum
of Acropolis. The second, r2, starts from the Omonia Square
and ends at the Acropolis Entrance. Web sites such as
ShareMyRoutes.com and TravelByGPS.com maintain a
huge collection of routes, like the above, with POIs from
all over the world, that are frequently updated as users
continuously share new interesting routes.

Given the availability of large route collections, the
problem of identifying paths on the route collection
arises frequently. Given a route collection and two POIs,
hereafter called nodes, ns and nt, the path query returns
a path, i.e., a sequence of nodes, that connects ns to nt.
As an example, consider the route collection of Figure 1
and a path query: “Find a path from Academy to Zappeion

Panagiotis Bouros is supported by the Greek State Scholarships Foundation
(IKY).

• P. Bouros is with the School of Electrical and Computer Engineering,
National Technical University of Athens, Greece.
E-mail: pbour@dblab.ece.ntua.gr,

• D. Sacharidis, T. Dalamagas and T. Sellis are with the Institute for the
Management of Information Systems, “Athena” Research Center, Greece.
E-mail: {dsachar,dalamag,timos}@imis.athena-innovation.gr,

• S. Skiadopoulos is with the Department of Computer Science, University
of Peloponnese, Greece.
E-mail: spiros@uop.gr.

National Technical

University of Athens

Omonia

Square

Academy

University

of Athens

ParliamentCathedral

Monastiraki

Square

Acropolis

Entrance

Museum

of Acropolis

Temple of

Olympian Zeus
Zappeion

route r

route r

Fig. 1. Examples of routes in city of Athens.

following existing routes”. Note that a path may contain
nodes from different routes, since reaching nt from ns

may require changing routes using links, i.e., nodes
shared among routes. For instance, an answer to the
previous query is the path: Academy, University of Athens
(changing from r1 to r2), Parliament, Zappeion.

This work targets path query evaluation on large disk-
resident route collections that are frequently updated.
Updates involve additions and deletions of routes. A
route collection can be trivially transformed to a graph;
hence, path queries can be evaluated using standard
graph search techniques. Such methods follow one of
two paradigms. The first employs graph traversal meth-
ods, such as depth-first search. The second compresses
the graph’s transitive closure, which contains reachability
information, i.e., whether a path exists between any
pair of nodes. Both paradigms share their strengths
and weaknesses. While the latter techniques are the
fastest, they are mostly suitable for datasets that are not
frequently updated, or when the updates are localized,
since they require expensive precomputation. On the
other hand, the former are easily maintainable, but are
slow as they may visit a large part of the graph.

Based on these observations, we propose two generic
search-based paradigms that exploit transitivity infor-
mation within the routes, and differ in their expansion

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

phase. For each route that contains the current search
node, route traversal search, introduced in [1], expands the
search considering all successor nodes in the route, while
link traversal search considers only the next link. Both
paradigms terminate when they reach a route that leads
to the target, and are faster than conventional search.

We present two algorithms, discussed in [1], based
on the first paradigm. RTS employs an inverted file,
R-Index, on the nodes of the route collection. RTST

uses the T -Index (in addition to R-Index) that captures
transitions among routes allowing earlier termination.

We then introduce three novel methods based on the
second paradigm. LTS employs an augmented variant
of R-Index and features a similar termination condition
to RTS. Similarly, LTST has a stronger condition based
on the T -Index. The LTS-k algorithm forgoes the high
storage and maintenance cost of T -Index and features a
tunable termination condition, which is at least as strong
as that of LTS and can become as strong as that of LTST.

Furthermore, we discuss efficient maintenance tech-
niques as routes are added and deleted from the collec-
tion. A thorough experimental study demonstrates that
the link traversal search methods always outperform a
conventional graph traversal algorithm. Among them,
LTS-k is shown to offer the best trade-off between effi-
ciency and maintenance cost.

The remainder of this paper is structured as follows.
Section 2 establishes the necessary background and dis-
cusses the related work in detail. Section 3 discusses
route traversal search, and Section 4 introduces the link
traversal search paradigm. Then, Section 5 discusses
maintenance of the index structures under frequent up-
dates of the route collection. Section 6 demonstrates our
experimental results and Section 7 concludes the paper.

2 PRELIMINARIES AND RELATED WORK

Section 2.1 establishes the necessary background, while
Section 2.2 reviews relevant literature.

2.1 Preliminaries

Let N denote a set of nodes, e.g., POIs, waypoints, etc.

Definition 2.1 (Route) A route r(n1, . . . , nk) over N is a
sequence of distinct nodes (n1, . . . , nk) ∈ N .

We denote the set of nodes in a route r as nodes(r),
and its length as Lr = |nodes(r)|.

Definition 2.2 (Route collection) A route collection R over
N is a set of routes {r1, . . . , rm} over N .

We denote all nodes in a route collection as nodes(R).

Definition 2.3 (Link) A node in nodes(R) is called link
if it is contained in at least two routes in R.

Example 2.1 Figure 2(a) illustrates a route collection R =
{r1, r2, r3, r4, r5}. Nodes a, b, c, d, f, s, t are links.

Definition 2.4 (Path) A path on a route collection R is a
sequence of distinct nodes (n1, . . . , nk) ∈ nodes(R), such
that for every pair of consecutive nodes (ni, ni+1), ni+1

is the immediate successor of ni in some route of R.

Note that a path may involve parts of routes from R.

(a) Route collection R (b) Routes graph GR

Fig. 2. A route collection R, an answer to PATH(s, t), and
routes graph GR.

Definition 2.5 (PATH queries) Let R be a route collection,
and ns and nt be two nodes in nodes(R). The path query
PATH(ns, nt) returns a path from ns to nt on R.

Example 2.2 Consider the route collection in Figure 2(a).
Path (s, w, a, c, d, f, y, t) is an answer to query PATH(s, t),
constructed by (1) visiting the nodes w and a after s in
r3, then, (2) using link a to change from route r3 to r2
and visit c and d, and finally, (3) using link d to change
from route r2 to r1, visit f , y and the target t.

A route collection R can be easily mapped to a graph
by merging all routes in R.

Definition 2.6 (Routes graph) The routes graph of a route
collection R is a labeled directed graph GR(N,E), where
N = nodes(R), and an edge (ni, nj , rk) ∈ E if there exists
a route rk ∈ R with nj immediately after ni.

Example 2.3 The collection R in Figure 2(a) is mapped
to routes graph GR in Figure 2(b). The different line
styles of the edges denote the five routes in R.

Storing the route identifiers as labels is necessary to
handle deletions. Therefore, multiple edges between two
nodes may exist, e.g., (t, s, r1) and (t, s, r5) in Exam-
ple 2.3. Note that connectivity from t to s is only lost
when both routes are removed from the collection.

2.2 Related Work

A path query on R can be answered directly on routes
graph GR using standard techniques, which we review
next. Note that we distinguish between two distinct but
closely related queries, studied in the literature: path and
reachability queries. A path query PATH(ns, nt) identifies a
path from ns to nt, while a reachability query REACH(ns, nt)
answers if such a path exists. Thus, an answer to
PATH(ns, nt) provides an answer to REACH(ns, nt), while
the converse does not hold.

Techniques for evaluating path/reachability queries
follow two paradigms: (1) searching, and (2) encoding
the graph’s transitive closure (TC). Searching methods
deal with PATH queries, while TC methods primarily
target REACH queries. As we discuss next, some of the
TC techniques can be extended to evaluate PATH queries.
Table 1 summarizes the related work in terms of the: (1)
graph type supported, (2) support for REACH, (3) support
for PATH, and (4) capacity to handle updates.

Searching. The simplest way to evaluate PATH queries is
to traverse the graph at query time exploiting a search
algorithm, e.g., depth-first or breadth-first search [2].
This approach has minimum space requirements, since
it only needs to store the adjacency lists of the graph. In

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 3

TABLE 1
Summary of related work on handling reachability and path queries on graphs.

category method graph type REACH PATH maintenance

searching depth/breadth-first search [2] all types yes yes update adjacency lists

TC encoding

2-hop [3] all types, but small yes by including first-edge not discussed
HOPI [4], [5] all types yes partially based on method of [4]
geometric [6] and graph partitioning 2-hop [7] DAG yes not discussed not discussed
updatable 2-hop [8] DAG yes not discussed based on node-separation
3-hop [9] DAG yes not discussed not discussed
interval labelling [10] DAG yes by computing ancestors gaps in postorder numbers
dual labeling [11] DAG yes not discussed not discussed
GRIPP [12] all types yes by computing descendants not discussed
path-cover [13] DAG yes not discussed not discussed

addition, the adjacency lists can be easily updated. On
the other hand, in the worst case, it may need to visit
all nodes of the graph to answer a query.

Encoding the TC. The transitive closure (TC) of a graph
GR(N,E) is the graph G∗

R
(N,E∗), where an edge (ni, nj)

is in E∗ if a path from ni to nj exists in GR. Using TC a
REACH query can be answered in constant time. However,
even though efficient algorithms for computing the TC

have been proposed, e.g., [14], [15], [16], the computation
and storage cost are prohibitive for large disk-resident
graphs. Therefore, various methods compress the TC.

2-hop [3], [17] identifies a set of nodes, called centers,
that best capture the reachability information of a graph
as intermediates. Thus, for each node n, the method
constructs a list Lin[n] with the centers that can reach
n and another Lout[n] with those reachable from n. To
determine the existence of a path from ns to nt, it checks
if Lout[ns] and Lin[nt] have a common center. To identify
the path, along with the center nc, the first node in the
path from n (resp. nc) to nc (resp. n) must also be stored.

Computing the optimal 2-hop scheme is NP-hard.
The work in [3] and [17] presents an approximation
algorithm based on set covering [18] that constructs a
2-hop scheme larger by a logarithmic factor than the
optimal one, but it still requires the computation of the
TC. Therefore, this approach cannot be applied to large
graphs. In addition, the work does not handle frequent
updates. Compared to 2-hop our methodology is less
efficient in evaluating path queries, but is significantly
cheaper to construct and maintain.

HOPI [4], [5] reduces the construction time of 2-hop
by exploiting graph partitioning, which works well for
forests with few connections between the different sub-
graphs, e.g., collections of XML documents. Updates are
handled by applying the construction method of [4].
HOPI is able to find elements, e.g., book, citation,
author, in an XML document that match XPath expres-
sions, e.g., //book//citation//author (where “//”
is the ancestor-descendant operator). However, the focus
of the work is to identify these elements and not detect
the full path on the XML documents that contains them.

There is a number of works that transform the input
graph to a DAG by replacing each strongly connected
component with a super node. For example, [6] proposes
a geometric-based method and [7] another one based
on graph partitioning for the efficient construction of 2-
hop. [9] proposes the 3-hop indexing scheme. The basic
idea is to use a chain of nodes, instead of a single node,

to encode the reachability information. [10] proposes a
labeling scheme that assigns to each node a sequence of
intervals, based on the postorder traversing of graph’s
spanning tree. Updates are handled by leaving gaps
in postorder numbers. Although not discussed, PATH

queries can be answered on the DAG by computing
the ancestors of the target node. The idea in [13] is to
partition the graph into a set of paths and then use the
path-tree cover, instead of assigning the intervals based
on the graph’s spanning tree. [11] proposes dual-labeling
for sparse graphs. [8] introduces the updatable 2-hop
based on the node-separation property.

All the above techniques cannot evaluate PATH queries
as the initial graph is collapsed. On the other hand, the
GRIPP scheme [12] for graphs (not only DAGs) assigns
to each node an interval label. Although not discussed,
PATH queries can be answered by finding the descendants
of the source node of the query. However, [12] does not
handle frequent updates.

3 ROUTE TRAVERSAL SEARCH

This section revisits our work from [1] for evaluating
PATH queries over route collections. Section 3.1 presents
the R-Index on route collections and details the RTS

algorithm. Section 3.2 outlines the RTST algorithm that
additionally exploits information about the transitions
among routes stored in the T -Index structure. Section 3.3
presents a detailed complexity analysis.

3.1 The RTS Algorithm

The Route Traversal Search (RTS) algorithm has the fol-
lowing key features. First, it traverses nodes in a manner
similar to depth-first search. However, when expanding
the current search node nq , RTS considers all succes-
sor nodes for each route that includes nq. Second, it
employs a termination check, based on the reachability
information within the routes, to considerably shorten
the search. Both principles depend on the inverted file
R-Index on the route collection which associates a node
with the routes that contain it.

Definition 3.1 (R-Index) Given a route collection R and
a node ni ∈ nodes(R), routes[ni] is the ordered list of
〈rj : oij〉 entries for all routes rj that include ni at their
oij-th position, sorted on the route identifier rj . R-Index
contains the lists routes[ni] for all ni ∈ nodes(R).

Example 3.1 Table 2 illustrates the R-Index for the
routes shown in Figure 2(a).

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

TABLE 2
The R-Index for the route collection R.

node routes[] list

a 〈r2 : 3〉, 〈r3 : 3〉
b 〈r2 : 2〉, 〈r4 : 1〉
c 〈r2 : 4〉, 〈r4 : 3〉
d 〈r1 : 1〉, 〈r2 : 5〉
f 〈r1 : 2〉, 〈r4 : 4〉
g 〈r3 : 4〉
s 〈r1 : 5〉, 〈r3 : 1〉, 〈r5 : 2〉

node routes[] list

t 〈r1 : 4〉, 〈r5 : 1〉
v 〈r2 : 1〉
w 〈r3 : 2〉
x 〈r2 : 6〉
y 〈r1 : 3〉
z 〈r4 : 2〉

The RTS algorithm takes as inputs: a route collection
R, the R-Index, the source ns and target node nt and
returns a path from ns to nt, if one exists, or null other-
wise. The algorithm uses the following data structures:
(1) a search stack Q, (2) a history set H, which contains
all nodes that have been pushed in Q, and (3) an ancestor
set A, which stores the direct ancestor of each node in
Q. H is used to avoid cycles during the traversal, and A
to extract answer paths. Note that RTS visits each node
once and, thus, there is a single entry per node in A.

RTS proceeds similarly to depth-first search. Initially,
the stack Q and H contain source node ns, while A is
empty. RTS proceeds iteratively popping a single node
nq from Q at each iteration. The algorithm terminates
when there exists a route rc that contains both nq and tar-
get nt, such that nt comes after nq . Specifically, to check if
the above condition holds, RTS looks for entries 〈rc :oqc〉
and 〈rc :otc〉 in lists routes[nq] and routes[nt] of R-Index
respectively, such that oqc < otc. The procedure is similar
to a merge-join, as both routes[nq] and routes[nt] lists
are sorted by the route identifier, that finishes when a
common route rc is found.

If such a route rc is identified, the search terminates
and the answer path is extracted. Specifically, starting
from nq, RTS uses the information in A to backtrack
to source ns constructing the (ns, . . . , nq) path. Then, it
concatenates this path with the part of route rc from nq

up to nt. During concatenation, the procedure ensures
that each node is contained only once in the answer path.

If a common route rc is not found, RTS expands the
search retrieving routes[nq] and considering all routes
that contain nq . For each such route ri and for each node
nr after nq in ri that is not in H (i.e., it has never been
pushed in Q) the algorithm performs the following tasks.
Node nr is pushed in Q and inserted in H. In addition,
the entry 〈n−

r , nr〉, where n−
r is the direct ancestor of nr

in route ri, is inserted in A. The fact that only new nodes
are inserted in Q, ensures that RTS avoids cycles.

Example 3.2 We illustrate the RTS algorithm for the
PATH(s, t) query on the route collection of Figure 2(a)
using the R-Index presented in Table 2. Initially, we
have: Q = {s}, H = {s} and A = {}. At the first
iteration, RTS pops s from Q and checks for termination
joining lists routes[s] = {〈r1 :5〉, 〈r3 :1〉, 〈r5 :2〉} of current
search node s with routes[t] = {〈r1 : 4〉, 〈r5 : 1〉} of target
t. The join identifies common route entries, i.e., r1 and
r5, but in both cases s is after t and therefore, RTS needs
to further search the collection.

Node s is contained in routes r1, r3 and r5. When

processing r1(d, f, y, t, s) and r5(t, s), the algorithm does
not add anything to Q, H and A since there are no
nodes after s. When processing r3(s, w, a, g), the algo-
rithm adds to Q and H, nodes w, a and g, and to A,
pairs 〈s, w〉, 〈w, a〉 and 〈a, g〉. After the fourth iteration,
we have Q = {w, c, d}, H = {s, w, a, g, c, d, x}, and
A = {〈s, w〉, 〈w, a〉, 〈a, g〉, 〈a, c〉, 〈c, d〉, 〈d, x〉}.

At the fifth iteration, d is popped. Then, RTS joins lists
routes[d] = {〈r1 : 1〉, 〈r2 : 5〉} with routes[t] = {〈r1 : 4〉, 〈r5 :
1〉} and identifies entries 〈r1 : 1〉, 〈r1 : 4〉 in the common
route r1. Since in r1, d is before t, the search terminates
successfully. The answer path (s, w, a, c, d, f, y, t) is the
concatenation of (s, w, a, c, d) (the path from s to current
search node d, constructed using A) and (d, f, y, t) (the
part of r1 that connects d to target t).

3.2 The RTST Algorithm

This section presents the Route Traversal Search with Tran-
sitions (RTST) algorithm for PATH queries. RTST expands
the search as RTS, but employs a stronger termination
check based on the transitions between routes. This
additional reachability information is modeled by the
transition graph GT , and is explicitly materialized in the
T -Index structure.

Definition 3.2 (Transition graph) The transition graph
of a route collection R is a labeled undirected graph
GT (R, ET), where its vertices are the routes in R, and a
labeled edge (ri, rj , nℓ) exists in ET if ri and rj share a
link node nℓ.

Intuitively, an edge (ri, rj , nℓ) in the GT denotes that
all nodes in ri before link nℓ can reach those after nℓ in
rj , and vice versa, i.e., all nodes in rj before nℓ can reach
those after nℓ in ri.

Example 3.3 Figure 3 illustrates the transition graph for
the route collection of Figure 2(a).

r1 (d, f, y, t, s)
r2 (v, b, a, c, d, x)
r3 (s, w, a, g)
r4 (b, z, c, f)
r5 (t, s)

Fig. 3. Transition graph for the route collection R.

The transition graph is stored in a modified adjacency
list representation denoted as T -Index.

Definition 3.3 (T -Index) Given a route collection R, for
each route ri ∈ R, trans[ri] is the ordered list of 〈rj , nℓ :
oℓi :oℓj〉 entries for all (ri, rj , nℓ) edges of GT , where oℓi
and oℓj denote the position of the link nℓ in routes ri
and rj , respectively. The entries are sorted on the route
identifier rj solving ties with oℓi. T -Index contains the
lists trans[ri] for all routes ri ∈ R.

Example 3.4 Table 3 illustrates the T -Index for the GT

graph presented in Figure 3.

RTST proceeds similar to RTS, but involves a different
termination check. For each route ri that contains the
current search node nq, it checks if there exists an edge

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 5

TABLE 3
T -Index for the transition graph of Figure 3.

route trans[] list of route in GT

r1 〈r2, d : 1 :5〉, 〈r3, s : 5 :1〉, 〈r4, f : 2 :4〉, 〈r5, t : 4 :1〉, 〈r5, s : 5 :2〉
r2 〈r1, d : 5 :1〉, 〈r3, a : 3 :3〉, 〈r4, b : 2 :1〉, 〈r4, c : 4 :3〉
r3 〈r1, s : 1 :5〉, 〈r2, a : 3 :3〉, 〈r5, s : 1 :2〉
r4 〈r1, f : 4 :2〉, 〈r2, b : 1 :2〉, 〈r2, c : 3 :4〉
r5 〈r1, t : 1 :4〉, 〈r1, s : 2 :5〉, 〈r3, s : 2 :1〉

(ri, rj , nℓ) in GT such that rj contains target nt, link nℓ

is after nq in ri, and nℓ is before nt in rj .
If the above hold, then a path from nq to target nt via

link nℓ exists, and thus a path from source ns to nt can be
found. To perform this check RTST scans lists trans[ri]
and routes[nt] from T -Index and R-Index, respectively,
similar to a merge-join as both lists are sorted on the
route identifier. The scan terminates when entries 〈rj , nℓ :
oℓi :oℓj〉 of trans[ri] and 〈rj :otj〉 of routes[nt] match, i.e.,
when the following conditions are satisfied:

(1) the entries correspond to the same route rj ,
(2) ri contains link nℓ after nq, i.e., oℓi > oqi, and
(3) rj contains nℓ before nt, i.e., oℓj < otj

Example 3.5 Consider query PATH(s, t) on the route col-
lection in Figure 2(a) indexed by the R-Index of Table 2
and T -Index of Table 3. The first two iterations of the
RTST algorithm are identical to those of RTS in Exam-
ple 3.2. Then, the third iteration processes a. According
to R-Index, a is contained in routes r2(v, b, a, c, d, x) and
r3(s, w, a, g). To check the termination condition for r2,
RTST joins list trans[r2] of T -Index with routes[t] of
R-Index. This results in the common route r1 (condition
(1)) with link d of (r2, r1, d) edge contained after a in r2
(condition (2)) and before target t in r1 (condition (3)).
Thus, the answer path is (s, w, a, c, d, f, y, t).

3.3 Complexity Analysis

Given a route collection R, let |R| denote the number
of routes, |N | the number of distinct nodes, and Lr the
length of a route, assuming all routes have equal length.
In the following , we assume that a disk page can store
BN nodes, BR routes[] entries, and BT trans[] entries.

R-Index. The R-Index structure contains an entry for
each node in every route, for a total of |R| · Lr entries.

Therefore, it occupies O
(

|R|·Lr

BR

)

pages. For the construc-

tion of R-Index, the entire collection must be accessed at
a cost of O(|R|·Lr

BN
) I/Os, while the index must be stored

at a cost of O
(

|R|·Lr

BR

)

I/Os. An important factor in the

performance of the algorithms is the size, in terms of
entries, |routes[]| of a R-Index list. In the average case,

each list has the same number of entries, i.e., O
(

|R|·Lr

|N |

)

.

In the worst case, a node can be contained in all routes,
i.e., the routes[] list has O (|R|) entries. In the sequel, we
assume the average case holds.

T -Index. Consider the routes[ni] list that contains an
entry for each route ni belongs to. This node contributes
O(|routes[ni]|

2) pairs of intersecting routes, and thus as
many T -Index entries. Consequently, the total number of

entries in T -Index is O
(

|R|2·L2
r

|N |

)

, while each list contains

O
(

|R|·L2
r

|N |

)

entries on average. The T -Index occupies

O
(

|R|2·L2
r

|N |·BT

)

pages. Its construction requires accessing the

entire R-Index for a cost of O
(

|R|·Lr

BR

)

I/Os, and writing

the index on disk for O
(

|R|2·L2
r

|N |·BT

)

I/Os.

RTS and RTST. At each iteration, after node nq is
popped, RTS and RTST perform two tasks. The first is
to insert new nodes in the search stack and is common
in both methods. This task requires retrieving the entire

list routes[nq] at a cost of O
(

|R|·Lr

|N |·BR

)

I/Os, and then

retrieving all routes contained in routes[nq] for a cost of

O
(

|R|·Lr

|N | · Lr

BN

)

I/Os.

The second task is the termination condition. RTS and
RTST need to retrieve the routes[nt] list of the target

incurring O
(

|R|·Lr

|N |·BR

)

I/Os. RTST additionally retrieves

the trans[ri] list of T -Index for each route ri contained

in routes[nq], at a cost of O
(

|R|·Lr

|N | ·
|R|·L2

r

|N |·BT

)

I/Os.

Aggregating for |N | nodes in the worst case
scenario, we obtain the following complexities. RTS

requires O
(

|R|·Lr

BR
+

|R|·L2
r

BN

)

I/Os. RTST requires

O
(

|R|·Lr

BR
+

|R|·L2
r

BN
+

|R|2·L3
r

|N |·BT

)

I/Os.

4 LINK TRAVERSAL SEARCH

Section 4.1 discusses the shortcomings of the algo-
rithms in Section 3, and proposes the link traversal search
paradigm that overcomes them. Then, Sections 4.2, 4.3,
4.4 present three novel methods based on this paradigm.
Section 4.5 discusses their complexity.

4.1 The Link Traversal Search Paradigm

Although the algorithms of Section 3 perform fewer
iterations than conventional depth-first search on the
route collection graph GR, they share three shortcom-
ings. First, they perform redundant iterations by visiting
non-links. To understand this, consider that the current
search node nq is not a link and belongs to a single route
ri. Further, assume that the algorithm has visited nℓ,
which is the link immediately before nq. Observe that
if the termination condition does not hold at nℓ, then it
neither holds at nq . To make matters worse, retrieving
routes[nq] is pointless as it contains a single route ri in
which all nodes after nq are already in the stack.

The second shortcoming is that the termination check
is expensive. For current search node nq , recall that both
RTS and RTST retrieve lists routes[nq] and routes[nt]
from R-Index, while RTST additionally retrieves all lists
trans[ri] from T -Index for each ri included in routes[nq].
This cost is amplified by the number of iterations, as the
algorithms perform the check for every node popped.

The final shortcoming is due to the traversal policy.
For each route that the current search node belongs to,
the algorithms insert into the stack route subsequences

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

that contain a very large number of nodes. This increases
the space requirements of Q (and consequently of sets
H, A). More importantly, however, some of these nodes
may never be visited, which results to redundant I/Os
incurred to retrieve them.

The next subsections introduce three methods, LTS,
LTST and LTS-k, that follow the link traversal search
paradigm. To deal with the first shortcoming, all algo-
rithms avoid visiting non-link nodes and conceptually
traverse the reduced routes graph G−

R
(N−, E−) of the route

collection, where N−⊆nodes(R) contains all links, and
E− contains all labeled directed edges (ni, nj , rk) such
that there exists a route rk ∈ R in which nj is the link
immediately following ni. Note that G−

R
is not explicitly

materialized, and is introduced to better illustrate the
link traversal search paradigm. For example, Figure 4
shows the reduced routes graph for the collection R

of Figure 2(a). Observe the differences between GR in
Figure 2(b) and the reduced routes graph G−

R
.

r1 (d, f, y, t, s)
r2 (v, b, a, c, d, x)
r3 (s, w, a, g)
r4 (b, z, c, f)
r5 (t, s)

Fig. 4. Reduced routes graph for the route collection R.

In the sequel, we assume that the source and target
nodes are always links. Otherwise, we set as source
(resp. target) the link immediately following (resp. pre-
ceding) it; if no such link exists, then no path can be
found. 1 Under this assumption, a PATH(ns, nt) query on
R is equivalent to finding a path from ns to nt in G−

R
,

and replacing each (ni, nj, rk) edge in the answer, with
the subsequence from ni to nj of route rk.

To tackle the second shortcoming, the algorithms re-
duce the cost of the termination check by precomput-
ing a target list of routes, and checking if the current
search node belongs in one of them. This eliminates the
recurring I/Os for the check, at the expense of a pre-
processing cost for assembling the target list. Regarding
the third shortcoming, the traversal policy of the new
paradigm dictates that at each iteration only the links
immediately after the current search node are inserted
in the stack, exactly like a depth-first search on G−

R
.

4.2 The LTS Algorithm

The Link Traversal Search (LTS) algorithm features a ter-
mination condition equivalent to that of RTS: the search
stops as soon as LTS visits a node (link) that lies on
the same route with the target. To traverse the routes
and check for termination, the algorithm employs an
augmented inverted file on the route collections, termed
R-Index+, which associates a node with the routes that
contain it and the immediately following link.

1. A special case arises when both ns and nt are in the same route
and no link between them exists.

TABLE 4
The R-Index+ for the route collection R.

node routes+[] list

a 〈r2 : 3, c〉, 〈r3 : 3,∅〉
b 〈r2 : 2, a〉, 〈r4 : 1, c〉
c 〈r2 : 4, d〉, 〈r4 : 3, f〉
d 〈r1 : 1, f〉, 〈r2 : 5,∅〉
f 〈r1 : 2, t〉, 〈r4 : 4,∅〉
g 〈r3 : 4,∅〉

s
〈r1 : 5,∅〉, 〈r3 : 1, a〉,
〈r5 : 2,∅〉

node routes+[] list

t 〈r1 : 4, s〉, 〈r5 : 1, s〉
v 〈r2 : 1, b〉
w 〈r3 : 2, a〉
x 〈r2 : 6,∅〉
y 〈r1 : 3, t〉
z 〈r4 : 2, c〉

Definition 4.1 (R-Index+) Given a route collection R

and a node ni ∈ nodes(R), routes+[ni] is the ordered list
of 〈rj :oij , n

+
i 〉 entries for all routes rj that include ni at

their oij -th position, where n+
i is the link immediately

following ni in rj if one exists, or ∅ otherwise. The
entries are sorted on the route identifier rj . R-Index+

contains the lists routes+[ni] for all ni ∈ nodes(R).

Example 4.1 Table 4 illustrates the R-Index+ for the
routes shown in Figure 2(a).

Note that the R-Index+ contains lists for non-link
nodes as well, so that a link immediately following a
non-link source or immediately preceding a non-link
target can be identified, as discussed in Section 4.1.

Figure 5 presents the pseudocode of the LTS algorithm
for evaluating a PATH(ns, nt) query. Similar to RTS, it
uses stack Q, and sets H and A. Initially, Q contains the
source ns (Line 1). LTS constructs a target list T that con-
tains entries 〈ri :oti〉 for all routes that contain the target
nt (Lines 3–5). Then, LTS proceeds iteratively (Lines 6–
16) until Q is depleted. At each iteration, assuming the
current search link popped from the stack is nq (Line 7),
LTS examines each entry of routes+[nq] (Lines 8–14).

The algorithm terminates if there exists an entry in T
indicating that nq lies before nt on a common route (Line
9), a condition which is identical to that of RTS. In that
case, ConstructPath composes an answer path using the
information in A. Otherwise, if the next link node n+

q

has not been previously visited, it is pushed in the stack
and in H. Further, the entry 〈n+

q , nq :ri :oqi〉 is inserted in
A indicating that n+

q is reached from nq following route
ri. The position oqi is used by ConstructPath to quickly
identify the subroute of ri between links nq and n+

q if
required, as explained in Section 4.1.

Example 4.2 We illustrate LTS for PATH(s, t) using the
R-Index+ of Table 4. Initially, LTS accesses routes+[t]
and constructs the target list T = {〈r1 :4〉, 〈r5 :1〉}.

At the first iteration, LTS pops s from Q and retrieves
list routes+[s] that contains three entries. The termina-
tion check (Line 9) for entries 〈r1 : 5,∅〉 and 〈r5 : 2,∅〉
fails, since the entries about r1 and r5 in T does not
match (s is not before t). Q, H and A do not change as
there is no link after s in r1 and r5. The check for 〈r3 :1, a〉
also fails as there is no entry for r3 in T . LTS inserts the
link a into Q and H, and the pair 〈s :r3 :1, a〉 into A, and
thus: Q = {a}, H = {s, a}, and A = {〈s :r3 :1, a〉}.
LTS proceeds expanding a and then c. After the third

iteration we have Q = {d, f}, H = {s, a, c, d, f}, and
A = {〈s :r3 :1, a〉, 〈a :r2 :3, c〉, 〈c :r2 :4, d〉, 〈c :r4 :3, f〉}.

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 7

Algorithm LTS

Input: ns, nt , R-Index+

Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list T : stores all routes that contain target nt

Method:

1. push ns in Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+

t 〉 in routes+[nt] do

4. insert 〈ri :oti〉 in T ;

5. end for

6. while Q is not empty do

7. let nq = pop(Q);

8. for each entry 〈ri :oqi, n
+
q 〉 in routes+[nq] do

9. if there is an entry 〈ri :oti〉 in T such that oqi<oti then

return ConstructPath(ns, nq, nt,A, ri :oti);

10. if n+
q /∈ H then

11. push n+
q in Q;

12. insert n+
q in H;

13. insert 〈nq :ri :oqi, n
+
q 〉 in A;

14. end if

15. end for

16. end while

17. return null;

Fig. 5. The LTS algorithm.

At the next iteration, f is popped and LTS retrieves list
routes+[f]. The entry 〈r1 : 2, t〉 matches the correspond-
ing 〈r1 :4〉 in T , since route r1 contains the current search
node f before target t. Thus, LTS terminates the search
and uses A to identify a sequence of links (〈s:r3 :1〉, 〈a:
r3 :∗〉, 〈a:r2 :3〉, 〈c:r2 :∗〉, 〈c:r4 :3〉, 〈f :r4 :∗〉, 〈f :r1 :2〉, 〈t:r1 :4〉)
that leads to the target. 〈a : r2 : 3〉 denotes that a is at
position 3 in r2; the symbol ∗ implies that the position
can be inferred. After retrieving the required parts of
these routes, the path (s, w, a, c, f, y, t) is constructed.

4.3 The LTST Algorithm

The Link Traversal Search with Transitions (LTST) algo-
rithm enforces a stronger termination check than LTS

using the transition graph of the route collection. In
particular, the LTST algorithm, similar to RTST, finishes
when it reaches a node that is closer than two routes
away from the target. To achieve this, LTST uses infor-
mation from the T -Index, discussed in Section 3.2.

Figure 6 presents the pseudocode of the LTST al-
gorithm, which is similar to that of LTS. The basic
difference is in the contents of the target list T (Lines 3–
8), which allow LTST to terminate sooner. The algorithm
retrieves list routes+[nt] from R-Index+ and accesses
T -Index to retrieve lists trans[ri] for all routes ri in
routes+[nt]. Just like LTS, it inserts into T all routes that
contain the target (Line 4). Moreover, LTST includes all
routes rj that can lead to nt via some link nℓ that resides
on the same route ri with nt (Line 6). Intuitively, this
implies that T contains routes (ri’s) that directly lead to
the target, and, in addition, routes (rj ’s) that intersect
with them (provided that the intersection occurs before
nt). Therefore, T includes all routes that are less than
two routes away from the target.

An entry of T has the form 〈rj : oℓj , ri : oℓi〉, which
means that route rj leads to the target nt in route ri via

some link nℓ that lies at the oℓj-th position in rj and at the
oℓi-th position in ri before nt. An entry 〈ri :oti,∅〉 implies
that route ri contains the target nt (see Line 4). Note that
the first item in the pair is used in the termination check,
while the second in the construction of the answer path.
LTST terminates if current search node nq lies on a

route ri that leads, via some link nℓ, to a route rj that
contains the target. Specifically, the algorithm checks if
there exist entries 〈ri :oℓi, rj :oℓj〉 in T and 〈ri :oqi, n

+
q 〉 in

routes+[nq] such that oqi<oℓi (Line 12). Note that based
on its construction, the target list may contain multiple
entries for the same route ri corresponding to different
via-links nℓ. However, as the termination check suggests,
it suffices to retain only the entry with the latest via-link,
i.e., that with the highest oℓi. A final subtle difference
with LTS is that ConstructPath requires routes ri, rj and
the positions of the via-link oℓi, oℓj in them, so as to
compose the answer path.

Algorithm LTST

Input: ns, nt , R-Index+, T -Index
Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list T : stores routes that contain nt and their intersecting routes

Method:

1. push ns in Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+

t 〉 in routes+[nt] do

4. insert 〈ri :oti,∅〉 in T ;

5. for each entry 〈rj, nℓ :oℓi :oℓj〉 in trans[ri] do

6. if oℓi<oti then

insert 〈rj :oℓj, ri :oℓi〉 in T ;

7. end for

8. end for

9. while Q is not empty do

10. let nq = pop(Q);

11. for each entry 〈ri :oqi, n
+
q 〉 in routes+[nq] do

12. if there is an entry 〈ri :oℓi, rj :oℓj〉 in T such that oqi <oℓi then

return ConstructPath(ns, nq, nt,A, ri :oℓi, rj :oℓj);

13. if n+
q /∈ H then

14. push n+
q in Q;

15. insert n+
q in H;

16. insert 〈n+
q , nq :ri :oqi〉 in A;

17. end if

18. end for

19. end while

20. return null;

Fig. 6. The LTST algorithm.

Example 4.3 Consider PATH(s, t) and R-Index+ and
T -Index, shown in Tables 4 and 3, respectively. First,
LTST retrieves routes+[t] from R-Index+, which con-
tains two routes r1 and r5. Then, it retrieves the cor-
responding lists trans[r1] and trans[r5] from T -Index,
and constructs the target list T = {〈r1 : 4,∅〉, 〈r2 : 5, r1 :
1〉, 〈r3 :1, r5 :2〉, 〈r4 :4, r1 :2〉, 〈r5 :1,∅〉}.

The first iteration of LTST is identical to that in Exam-
ple 4.2. At the second iteration, LTST pops link a and
retrieves list routes+[a] from R-Index+. The first entry
〈r2 :3, c〉 in this list matches the entry 〈r2 :5, r1 :1〉 in the
target list, since in r2 node a lies at position 3 before some
node nℓ at position 5 that leads to the target via route r1
(at this point LTST does not know that nℓ corresponds to

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

d). Therefore, the search terminates and LTST identifies
a sequence of links (〈s : r3 : 1〉, 〈a : r3 : ∗〉, 〈a : r2 : 3〉, 〈∗ : r2 :
5〉, 〈∗ :r1 :1〉, 〈t :r1 :∗〉) that leads to the target; the symbol
* indicates that the node or its position can be inferred.
After retrieving the required parts of routes r1, r2 and r3,
the answer path (s, w, a, c, d, f, y, t) is constructed.

4.4 The LTS-k Algorithm

The LTST algorithm terminates as soon as the current
search node is within two routes from the target. This
strong termination condition is possible due to the infor-
mation stored in T -Index. However, the size of T -Index
is quadratic with respect to the number of routes, which
makes it impractical for large collections.

This section presents the LTS-k algorithm that operates
without the T -Index, and features a tunable termination
condition based on parameter k. Particularly, LTS-k stops
when it reaches a route ri that leads via link nℓ to a route
rj containing the target nt, with the requirement that nℓ

is at most k links before nt in rj . Note that when k is set
to 0, the algorithm reduces to LTS. On the other hand,
for a sufficiently high k value (larger than the maximum
number of links in any route), LTS-k terminates when
it visits a node that is less than two routes from nt,
exactly like LTST. In this case, however, LTS-k spends
more time compiling the target list compared to LTST,
since the latter has access to T -Index that materializes
the transition information between any two routes.
LTS-k, shown in Figure 7, requires R-Index+ (but not

T -Index), and the parameter k. Since LTS-k only differs
from LTST in the target list construction, we only detail
this process that involves two phases (Lines 3–17).

In the first phase (Lines 3–12), LTS-k constructs a list
L with all links that are within k links from the target
in some route, including nt itself (Line 4). To find these
nodes, the algorithm retrieves all routes that contain nt

(Line 5) and inserts into L the k links before nt (if they
exist) in each route (Lines 6–11). An entry of L has the
form 〈nℓ, ri : oℓi〉, which means that link nℓ lies in the
same route ri with target nt and is within k links away
from it. Note that although a link in L may appear in
multiple routes, LTS-k only keeps a single entry per link.

At this point we make two important notes. First, LTS-
k must distinguish between links and non-link nodes,
when retrieving a route. Therefore, the algorithm needs
to keep in main memory either a compressed bitmap of
length equal to the number of nodes, or a hash index
storing only the links, in the case when the collection
has much fewer links than nodes.

Second, L is not the set of all links that are within k

links from the target. Rather, L contains a subset of only
those links that are in the same route with nt, primarily
for efficiency reasons. In order to reach all links within
k links from nt, the algorithm would need to perform
a breadth-first search starting from nt following the
reverse edges of the conceptual reduced routes graph
G−

R
. Since G−

R
is not materialized, this operation would

have to retrieve a much larger set of routes.

Subsequently, in the second phase (Lines 13–17), the
algorithm scans list L and uses the R-Index+ to insert
into T all routes that contain a link of L. Similar to LTST,
LTS-k retains a single entry 〈rj :oℓj , ri :oℓi〉 per route, that
of the highest via position oℓj .

Algorithm LTS-k
Input: ns, nt , k, R-Index+

Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list L: stores all links that are within k links from nt in some route
list T : stores all routes that contain a node in L

Method:

1. push ns in Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+

t 〉 in routes+[nt] do

4. insert 〈nt, ri :oti〉 in L;

5. retrieve route ri and let oℓi = oti ;

6. for m = 1 up to k do

7. repeat // make oℓi point at the previous link in ri
8. let oℓi = oℓi − 1;

9. until nℓ is a link;

10. insert 〈nℓ, ri :oℓi〉 in L;

11. end for

12. end for

13. for each entry 〈nℓ, ri :oℓi〉 in L do

14. for each entry 〈rj :oℓj, n
+

ℓ
〉 in routes+[nℓ] do

15. insert 〈rj :oℓj, ri :oℓi〉 in T ;

16. end for

17. end for
[proceeds as in Lines 9–20 of the LTST algorithm]

Fig. 7. The LTS-k algorithm.

Example 4.4 We illustrate the LTS-1 algorithm (k = 1)
for the PATH(s, t) query on the collection of Figure 2(a)
using the R-Index+ presented in Table 4.

Initially, the algorithm constructs the list of links L that
are within one link from t. It accesses routes+[t] = {〈r1 :
4, s〉, 〈r5 :1, s〉} and retrieves routes r1 and r5 at positions
4 and 1, respectively. Moving backwards in r1, LTS-1
identifies f as the one link before t; route r5 contains
no nodes before t. Therefore, L = {〈t, r1 : 4〉, 〈f, r1 : 2〉}
contains an entry for the target t and f .

Subsequently, LTS-1 accesses the lists routes+[t] =
{〈r1 : 4, s〉, 〈r5 : 1, s〉} and routes+[f] = {〈r1 : 2, t〉, 〈r4 :
4,∅〉} for the two links in L. Then, it creates the target
list that contains an entry for each route r1, r4 and r5:
T = {〈r1 :4,∅〉, 〈r4 :4, r1 :2〉, 〈r5 :1,∅〉}.

The first two iterations of LTS-1 are the same as
those of LTS. At the third iteration, LTS-1 pops link
c and accesses list routes+[c] = {〈r2 : 4, d〉, 〈r4 : 3, f〉}
from R-Index+. The second entry matches the entry
〈r4 : 4, r1 : 2〉 in L, since c is on r4 before position 4.
Therefore, the algorithm identifies a sequence of links
(〈s:r3 :1〉, 〈a:r3 :∗〉, 〈a:r2 :3〉, 〈c:r2 :∗〉, 〈c:r4 :3〉, 〈∗:r4 :4〉, 〈∗:
r1 :2〉, 〈t :r1 :∗〉) that leads to the target. After retrieving
the required parts of routes r1, r2, r3 and r4, the answer
path (s, w, a, c, f, y, t) is constructed.

Note that for k=2, the list L would also contain link d.
In that case, the target list of LTS-2 would be exactly the
same as that in Example 4.3, and LTS-2 would proceed
identically to LTST.

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 9

4.5 Complexity Analysis

We use the notation introduced in Section 3.3. In addi-
tion, we assume that a disk page contains B+

R routes+[]
entries.

R-Index+. The analysis is similar to R-Index, substitut-
ing BR with B+

R.

LTS, LTST and LTS-k. Evaluating a PATH query according
to the link traversal search paradigm consists of two
phases. In the first, the target list T is constructed, while
in the second the collection is traversed.

The second phase is identical for all algorithms. At
each iteration, after node nq is popped, they access the

routes+[nq] at a cost of O
(

|R|·Lr

|N |·B+

R

)

I/Os. Note that

the termination condition of the link traversal search
algorithms incurs no I/O cost.

In the first phase, all algorithms retrieve list

routes+[nt] at a cost of O
(

|R|·Lr

|N |·B+

R

)

I/Os. In addition,

LTST retrieves from T -Index the trans[] lists for each

route in routes+[nt] at a cost of O
(

|R|2·L3
r

|N |2·BT

)

I/Os. On

the other hand, LTS-k retrieves each route referenced in

routes+[nt] with O
(

|R|·Lr

|N | · Lr

BN

)

I/Os, and then for each

route it reads the routes+[] list of the k nodes before the

target with O
(

k · |R|·Lr

|N | · |R|·Lr

|N |·B+

R

)

I/Os.

Aggregating for |N | nodes in the worst case
traversal scenario, we obtain the following complexi-

ties. LTS requires O
(

|R|·Lr

|N |·B+

R

+ |R|·Lr

B+

R

)

I/Os. LTST re-

quires O
(

|R|·Lr

|N |·B+

R

+
|R|2·L3

r

|N |2·BT
+ |R|·Lr

B+

R

)

I/Os. LTS-k re-

quires O
(

|R|·Lr

|N |·B+

R

+
|R|·L2

r

|N |·BN
+ k ·

|R|2·L2
r

|N |2·B+

R

+ |R|·Lr

B+

R

)

I/Os.

5 UPDATING ROUTE COLLECTIONS

Section 5.1 discusses the case when new routes are added
in the collection, while Section 5.2 addresses deletions.
Note that all index structures are stored as inverted files
on secondary storage. To handle frequent updates, we
perform lazy updates, deferring propagation of changes
to the disk by maintain additional information in main
memory. Then, at some time, a batch update process
reflects all changes to the disk resident indices. Insertions
are handled by merging memory-resident information
with disk-based indices [19], while deletions require
rebuilding of the affected lists.

5.1 Insertions

To support lazy updating for an insertion, we maintain
a main memory list for each disk resident list affected.
The main memory lists contains two types of entries. An
entry prefixed with the + symbol is new and must be
added to the disk-based list. An entry prefixed with the
± symbol exists on disk but must be updated.

Indices are updated in two phases. Buffering updates
the memory resident lists and occurs online every time
a new route is inserted in the collection. Flushing prop-
agates all changes to the disk-based indices and is

thus executed periodically offline. Between two flushing
phases, the algorithms must also take into account the
main memory lists. When retrieving a disk-based list: (1)
all main memory (+ and ±) entries are also considered,
and (2) all disk-based entries that have a corresponding
± main memory entry are ignored. In the following, we
detail the two phases for each of the three indices used.

R-Index. Assume that a new route ri arrives. Then, for
each node nj at position oji in ri, insert the entry +〈ri:
oji〉 at the end of the main memory list routesM [nj] (the
list may need to be constructed if it does not exist). Note
that buffering requires no disk access.

In the flushing phase, each main memory list
routesM [nj] is merged with the corresponding disk-
based list routes[nj]. Recall that entries in routes[nj] are
sorted ascending on the route identifier. Therefore, since
all entries in routesM [nj] are about new routes, the merg-
ing operation simply requires appending routesM [nj] at
the end of routes[nj].

R-Index+. Assume that ri is added to the collection.
For each node nj in ri main memory lists routes+M

are created similar to the buffering phase of R-Index.
However, an additional step is required, as the next
link information in some entries may change. This is
necessary when a node nj in the newly added route ri
becomes a link. Let rk be the only route that nj belonged
to before the update, and let n−

j (resp. n+
j) denote the link

immediately before (resp. after) nj in rk. Then, when ri
is added, all nodes in rk after n−

j and before nj should

have node nj as their next link, instead of n+
j .

After inserting a new route ri, a node nj of ri becomes
a link, if nj already appears in the collection but is not a
link. Thus, to detect this case, we use the main memory
data structure for distinguishing links from non-link
nodes discussed in Section 4.4. In case nj becomes a link,
we retrieve the route rk and identify all nodes after n−

j

and before nj , where n−
j is the first link before nj . For

each such node nm, we insert into the main memory list
routes+M [nm] the entry ±〈rk :omk, nj〉.

In the flushing phase, if an R-Index+ list contains only
entries with the plus sign, it is simply appended at the
end of the corresponding disk resident list, similar to the
case of R-Index. On the other hand, a routes+M [nm] list
that contains entries prefixed with ± must update those
in routes[nm]; this operation is similar to a merge-join of
the two lists, as both are sorted on the route identifier.

T -Index. As before, assume that a new route ri arrives.
For each link nj at position oji in ri retrieve the R-Index
(or R-Index+) lists from disk and main memory. Then,
for each entry 〈rk :ojk〉 (ri 6= rk) in these lists: (1) insert
the entry +〈rk, nj:oji:ojk〉 at the end of the main memory
list transM [ri], and (2) insert the entry +〈ri, nj:ojk:oji〉 at
the end of the main memory list transM [rk]. Note that
the buffering phase for T -Index requires retrieving from
disk routes[nj] for each link in ri that is not new.

The flushing phase merges each memory resident list
with the corresponding on the disk. Similar to the case of

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

R-Index, as the list transM [rj] of an old route rj contains
only entries about new routes, transM [rj] is appended
at the end of trans[rj]. Finally, the list transM [ri] of a
newly added route ri has no counterpart on the disk,
and thus it becomes the disk-based list trans[ri].

5.2 Deletions

Deletions need different treatment compared to inser-
tions, as many entries across multiple lists are affected.
Identifying them would require a large number of disk
accesses. Therefore, a buffering phase does not occur
when a route deletion arrives. Rather, a list is maintained
that contains all routes deleted since the last flushing.
Then, during the execution of a search, retrieved en-
tries that contain a deleted route are simply discarded.
This design choice may influence the performance of
the link traversal search algorithms, mainly because the
demotion of a link to a non-link node is not captured
and thus non-link nodes may be visited. However, the
deletion of a node is captured and hence the correctness
of all algorithms is not affected. Next, we detail the flushing
phase, which rebuilds the affected lists, for each index.

R-Index and R-Index+. For each deleted route ri, re-
trieve the corresponding route from disk. For each node
nj of ri, retrieve the list routes[nj] (or routes+[nj]) and
delete the entry corresponding to ri. During this process,
the main memory data structure for distinguishing links
from non-link nodes is updated.

T -Index. Flushing of T -Index occurs in parallel to flush-
ing R-Index/R-Index+. Assume that the routes[nj] (or
routes+[nj]) list for the node nj of the deleted route ri is
considered. Then, for each non-deleted entry 〈rk :ojk, n

+
j 〉

in the list, retrieve from T -Index the list trans[rk] and
remove from it the entry concerning ri. Additionally,
delete the entire list trans[ri].

6 EXPERIMENTAL EVALUATION

This section presents a detailed study of all algorithms
introduced. Section 6.1 details the setting, while Sec-
tions 6.2, 6.3 and 6.4 evaluate index construction, query-
ing and index maintenance, respectively, of all methods.

6.1 Experimental Setup

We study the route traversal methods, RTS and RTST,
and the link traversal algorithms, LTS, LTST and LTS-k.
To gauge performance we compare against conventional
depth-first search (DFS) on the reduced routes graph G−

R
.

All algorithms are written in C++ and compiled with gcc.
The evaluation is performed on a 3 Ghz Intel Core 2 Duo
CPU with 4GB RAM running Debian Linux.

We generate synthetic route collections varying the
following parameters (Table 5): (1) the number of routes
in the collection, |R|, (2) the route length, Lr, (3) the
number of distinct nodes in the routes, |N |, and (4) the
links/nodes ratio α. In each experiment, we vary one of
the parameters while we keep the others to their default
values.

TABLE 5
Experimental parameters

parameter values default value

|R| 20K, 50K, 100K, 200K, 500K 100K
Lr 3, 5, 10, 20, 50 10
|N | 20K, 50K, 100K, 200K, 500K 100K
α 0.2, 0.4, 0.6, 0.8, 1 0.6

6.2 Index Size and Construction Cost

For each method, we measure the time spent to construct
the necessary indices and their storage requirement.
Table 6 shows the indices employed by each method.

TABLE 6
Methods for evaluating PATH queries

input method name index

reduced routes graph G−

R
DFS adjacency lists

route collection

RTS R-Index
RTST R-Index & T -Index
LTS R-Index+

LTST R-Index+ & T -Index
LTS-k R-Index+

Varying the number of routes |R|. The disk space
requirement of the R-Index/R-Index+, employed by
RTS, LTS, LTS-k, and DFS, 2 depends primarily on the
number of nodes |N | (which determines the number of
lists routes[]/routes+[]) and not on |R| (which affects the
length of the lists). Hence, Figure 8(a), shows that the
space for these methods remains constant. Note that RTS
and LTS/LTS-k exhibit the same space consumption, in
terms of disk pages, although an R-Index+ compared to
an R-Index entry contains additional information.

On the other hand, as |R| increases, the number of
edges in the transition graph, and thus the size of
the T -Index employed by RTST and LTST, quickly
increases. The values above the RTST line quantify the
difference between RTST and RTS (and between LTST

and LTS/LTS-k), which corresponds to the T -Index size.
The construction time for all indices, shown in Fig-
ure 9(a), increases as the collection becomes larger. The
values above the RTST line measure the time required
for building T -Index only. Note that for |R| = 500K
the construction time of T -Index increases modestly
compared to the six-fold increase of the index size. This
occurs because the majority of the T -Index pages are
written sequentially on the disk. 3

Varying the route length Lr. The space consumption
of the R-Index/R-Index+ does not change with Lr, as
shown in Figure 8(b). This is because, as explained in the
context of Figure 8(a), the number of routes[]/routes+[]
lists remains fixed and while the lists become longer they
still fit within the same number of pages. In contrast,
the space for RTST and LTST increases rapidly with Lr,
since GT , encoded by T -Index, becomes denser.

The construction times for RTST and LTST in Fig-
ure 9(b) increase modestly with Lr, although T -Index

2. In fact, DFS operates on the adjacency lists of the reduced routes
graph, where a list contains for each adjacent link the routes it belongs
to and its position in them; thus, an adjacency list contains equivalent
information to the corresponding R-Index+ list.

3. On our system, a sequential access is around 350 times faster that
a random one.

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 11

RTST RTS DFS ⋆ LTS & LTS-k � LTST ♦

100

1000

10000

20 50 100 200 500

|R| (×1000)

(MB)

80
200

400
800

4800

♦
♦

♦
♦

♦

� � � � �⋆ ⋆ ⋆ ⋆ ⋆

(a) Varying number of routes

100

1000

10000

3 5 10 20 50

Lr

(MB)

400 400 400
800

5000

♦ ♦ ♦
♦

♦

� � � � �⋆ ⋆ ⋆ ⋆ ⋆

(b) Varying route length

10

100

1000

10000

20 50 100 200 500

|N | (×1000)

(MB)

960 400 400 400
400

♦
♦ ♦

♦
♦

�

�
�

�

�

⋆

⋆
⋆

⋆

⋆

(c) Varying number of nodes

100

1000

10000

0.2 0.4 0.6 0.8 1

α

(MB)

680
400 400 400 400♦
♦ ♦ ♦ ♦

� � � � �⋆ ⋆ ⋆ ⋆ ⋆

(d) Varying links/nodes ratio

Fig. 8. Indices space consumption.

RTST RTS DFS ⋆ LTS & LTS-k � LTST ♦

1000

10000

20 50 100 200 500

|R| (×1000)

(sec)

1000 1250
1660

2500
5000

♦
♦

♦

♦

♦

�
�

�

�

�

⋆
⋆

⋆

⋆

⋆

(a) Varying number of routes

1000

10000

3 5 10 20 50

Lr

(sec)

1660 1660 1660 1660 1680
♦ ♦ ♦ ♦ ♦

� � � � �⋆ ⋆ ⋆ ⋆ ⋆

(b) Varying route length

1000

10000

100000

20 50 100 200 500

|N | (×1000)

(sec)

1000 1250
1660

2500
5000

♦ ♦
♦

♦

♦

� �
�

�

�

⋆ ⋆
⋆

⋆

⋆

(c) Varying number of nodes

1000

10000

0.2 0.4 0.6 0.8 1

α

(sec)

1660 1660 1660 1660 1660
♦ ♦ ♦ ♦ ♦

� � � � �⋆ ⋆ ⋆ ⋆ ⋆

(d) Varying links/nodes ratio

Fig. 9. Indices construction time.

becomes much larger. This occurs because the number of
random accesses (that depends on the number of trans[]
lists) remains constant, as the increase in T -Index’s size
is due to its lists occupying more pages. Recall, that the
contents of a list are written sequentially on disk.

Varying the number of nodes |N |. The number of
routes[]/routes+[] lists depends on |N | and thus the
total size of the R-Index/R-Index+ scales linearly as
shown in Figure 8(c). Increasing the number of nodes,
while |R| and Lr remain fixed, causes an increase in
the number of links (in absolute values). This makes
each link appear fewer times in the routes and thus the
number of edges in GT decreases. The space requirement
of T -Index decrease from 960MB to its minimum 400MB
(1 page for each of the 100K routes). Figure 9(c) shows
that the construction time for all methods increases with
|N | due to the increase of the R-Index/R-Index+ size.

Varying the links/nodes ratio α. The space required for
R-Index/R-Index+ depends on the number of nodes
|N | and not on the links/nodes ratio, hence the constant
lines in Figure 8(d). As the number of links increases
(|R| and Lr remain fixed), the transition graph becomes
sparser, as explained in the context of Figure 8(c); this
accounts for the decrease in the space T -Index occupies
from 700MB to 400MB. Figure 9(d) shows that the con-
struction times for all indices are unaffected by α.

6.3 Evaluating PATH Queries

We study the efficiency of the proposed methods for
processing PATH queries. All reported values are the
averages taken by posing 5, 000 distinct queries. Note
that in Sections 6.3.1 and 6.3.2 all considered queries
have an answer, i.e., a path exists; the case of queries
with no answer is investigated in Section 6.3.3.

6.3.1 Route vs link traversal search

We compare the route traversal search methods RTS and
RTST against the basic link traversal search algorithm
LTS in terms of the execution time, while varying |R|, Lr,
|N | and α in Figures 10(a), (b), (c) and (d), respectively.

Varying the number of routes |R|. As |R| increases,
finding a path between two nodes becomes easier. This
is exhibited by RTST and LTS in Figure 10(a). In con-
trast, the execution time of RTS increases with |R| as it
performs more iterations compared to RTST, which has
a stronger termination condition, and to LTS, which only
visits links.

Varying the route length Lr. The same observations
hold when the route length increases in Figure 10(b). The
performance of RTS deteriorates faster, since, in addition
to requiring more iterations, each iteration costs more, as
RTS inserts in the stack longer subsequences of routes.

Varying the number of nodes |N |. When |N | increases,
finding a path becomes harder, as shown in Figure 10(c).
The advantage of RTST over RTS decreases with |N |,
because the benefit of a stronger termination condition
diminishes as the total execution time is dominated by
the number of iterations required. The advantage of LTS
over RTS decreases because the benefit of traversing
the links diminishes as each link is contained in fewer
routes. Note that even for large |N |, not examined in
this experiments set, RTS can never outperform LTS as
they employ the same termination condition and RTS

will always need more iterations than LTS. The same
argument carries to RTST compared to LTST.

Varying the links/nodes ratio α. When the links/nodes
ratio increases, there are more links in the collection, but
each of them appears in fewer routes. In particular, when
α = 0.2 the link frequency, i.e., the (average) number

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

RTS RTST LTS �

1

10

100

1000

10000

20 50 100 200 500

|R| (×1000)

(sec)

�

�
�

�
�

(a) Varying number of routes

0.1

1

10

100

1000

10000

3 5 10 20 50

Lr

(sec)

�
�

�

�

�

(b) Varying route length

0.1

1

10

100

1000

10000

20 50 100 200 500

|N | (×1000)

(sec)

�

�

�

�

�

(c) Varying number of nodes

1

10

100

1000

10000

0.2 0.4 0.6 0.8 1

α

(sec)

�

�
�

�
�

(d) Varying links/nodes ratio

Fig. 10. Link vs route traversal search: execution time.

of routes in which it appears, is 46, and becomes 10
when α=1. In general, as the ratio increases it becomes
harder to find a path. Hence, as α increases LTS needs
more iterations to reach the target, and its execution time
increases. It is important to notice the behavior of RTS

and RTST. At each iteration and after a link is popped,
these algorithms need to retrieve as many routes as the
link frequency. This implies that the cost per iteration
decreases with α. On the other hand, since the number
of iterations increases, the total execution time increases
slightly for small α values, but ultimately decreases.

When α = 1, all nodes are links (the reduced routes
graph G−

R
reduces to the GR graph) and thus LTS visits

exactly the same nodes with RTS. Still LTS is around 8.6
times faster, as it performs fewer accesses per iteration.
As before, the argument applies to LTST (not shown in
the figure), which outperforms RTST.

6.3.2 Link traversal search vs DFS

In the following sets of experiments, we investigate the
performance of LTS, LTST and LTS-k (k is set to 1, 3 and
5), using depth-first search DFS as the baseline.

To better understand the algorithms’ behavior, we
distinguish two phases when processing a PATH(ns, nt)
query: initialization and core. In the first phase, all meth-
ods need to retrieve the first link n−

t before nt (resp. n+
s

after ns) when the target (resp. source) is not a link, as
discussed in Section 4.1. In addition, the link traversal
search methods assemble the target list T by accessing
the index structures. The core phase involves traversing
the nodes and checking for termination.

In each setting, we measure the average value of: (1)
the total execution time, (2) the cost of the initialization
phase in terms of I/O operations, (3) the size of the target
list in KBs, and (4) the number of iterations, i.e., nodes
visited, during the core phase.

Varying the number of routes |R|. As |R| increases,
every link is contained in more routes and the number
of iterations decreases, as shown in Figure 11(d). In the
initialization phase (after retrieving the links following
the source and preceding the target, if necessary), LTS
retrieves only routes+[nt] and assembles the target list;
this has a constant cost as shown in Figure 11(b). On the
other hand, LTS-k and LTST retrieve multiple routes+[]
and trans[] lists, respectively, depending on the number
of routes a link appears in. Since this factor increases
with |R|, the initialization cost also increases.

Similar observations apply for the size of the target
list T , which increases for all methods as the G−

R
graph

becomes denser; see Figure 11(c). LTST has the largest
while LTS has the smallest T . In comparison, the target
list size for the LTS-k methods increases with k and
ranges between that of LTS and LTST (recall that LTS-0
corresponds to LTS). However, all LTS-k methods have
higher initialization costs compared to LTST, because the
latter has access to the T -Index. Note that the size of
the target list T portrays the strength of the termination
condition; compare the trends in Figures 11(c) and 11(d).
Among the link traversal search methods, LTS has the
weaker and LTST the stronger termination condition.

Putting the cost of the two phases together, we reach
the following conclusions. The total execution time of
DFS and LTS decreases with |R|, with LTS becoming
up to one order of magnitude faster, as shown in Fig-
ure 11(a). Similarly, the processing time of LTST and
LTS-k decreases rapidly up to 100K routes, and LTST

becomes more that two orders of magnitude faster than
DFS. On the other hand, when the collection contains
more that 100K routes (while the number of nodes and
route length remain fixed) the initialization cost of the
LTST, LTS-k methods dominates the total time, as less
than 10 iterations are required to find a path. Hence the
execution time slightly increases for these methods.

Varying the route length Lr. Figure 12 illustrates the
impact of varying Lr on evaluating PATH queries. As Lr

increases, every link is contained in more routes and the
reduced G−

R
graph becomes more dense. Therefore, all

algorithms exhibit the same trends as in Figure 11(d).
Note that LTS becomes the fastest method for Lr = 50
outperforming DFS by almost two orders of magnitude.

Varying the number of nodes |N |. Figure 13 studies
the effect of increasing |N |, while the number of routes
in the collection and route length remain fixed. As |N |
increases, even though the number of links increases,
each of them is contained in fewer routes. Therefore, the
reduced routes graph G−

R
becomes sparser, which means

that finding a path becomes harder. This is verified in
Figure 13(c), which depicts that the target list decreases
with |N |, and in Figure 13(d), which shows that more
nodes are visited as |N | increases.

Subsequently, the initialization cost of LTST and LTS-
k decreases with |N |. As explained in the context of
Figure 11, since LTS accesses a single routes+[] list, its

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 13

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦

0.1

1

10

100

1000

20 50 100 200 500

|R| (×1000)

(sec)
⋆

⋆
⋆

⋆
⋆

�

�
�

�
�

+

+

+ +
+

×

×
× ×

×

△

△
△ △

△

♦

♦

♦ ♦
♦

(a) Execution time

1

10

100

1000

20 50 100 200 500

|R| (×1000)

(I/Os)

� � � � �

+
+

+
+

+

×
×

×
×

×

△
△

△
△

△

♦
♦

♦
♦

♦

(b) Initialization cost

0.001

0.01

0.1

1

10

100

1000

20 50 100 200 500

|R| (×1000)

(KB)

⋆ ⋆ ⋆ ⋆ ⋆
�

�
�

�
�

+

+
+

+

+

×

×
×

×
×

△

△
△

△
△

♦

♦
♦

♦

♦

(c) Target list size

1

10

100

1000

10000

100000

20 50 100 200 500

|R| (×1000)

(iterations)
⋆

⋆
⋆

⋆
⋆

�

�
�

�
�

+

+

+
+

+

×

×

×
×

×

△

△

△
△

△

♦

♦

♦
♦

♦

(d) Iterations

Fig. 11. Link traversal search vs DFS: varying number of routes.

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦

0.1

1

10

100

1000

3 5 10 20 50

Lr

(sec)
⋆

⋆
⋆

⋆
⋆

�
�

�

�

�

+

+

+ +
+

×

×

× ×
×

△

△

△
△

△

♦

♦

♦ ♦
♦

(a) Execution time

1

10

100

1000

3 5 10 20 50

Lr

(I/Os)

� � � � �

+
+

+
+

+

×
×

×
×

×

△
△

△
△

△

♦
♦

♦

♦

♦

(b) Initialization cost

0.001

0.01

0.1

1

10

100

1000

3 5 10 20 50

Lr

(KB)

⋆ ⋆ ⋆ ⋆ ⋆
� �

�
�

�
+

+
+

+

+

×
×

×
×

×

△

△

△
△

△

♦

♦

♦

♦

♦

(c) Target list size

1

10

100

1000

10000

100000

3 5 10 20 50

Lr

(iterations)
⋆ ⋆

⋆
⋆

⋆

�
�

�

�

�

+

+

+

+

+

×

×

×

×
×

△

△

△

△
△

♦

♦

♦

♦ ♦

(d) Iterations

Fig. 12. Link traversal search vs DFS: varying route length.

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦

0.1

1

10

100

1000

20 50 100 200 500

|N | (×1000)

(sec)

⋆

⋆

⋆

⋆

⋆

�

�

�

�

�

+
+ +

+

+

×
× ×

×

×

△
△ △

△

△

♦
♦ ♦

♦

♦

(a) Execution time

1

10

100

1000

20 50 100 200 500

|N | (×1000)

(I/Os)

� � � � �

+
+

+
+

+

×
×

×
×

×

△
△

△
△

△

♦

♦
♦

♦
♦

(b) Initialization cost

0.001

0.01

0.1

1

10

100

1000

20 50 100 200 500

|N | (×1000)

(KB)

⋆ ⋆ ⋆ ⋆ ⋆

�
�

�
�

�

+
+

+
+

+

×
×

×
×

×

△
△

△
△

△

♦

♦
♦

♦

♦

(c) Target list size

1

10

100

1000

10000

100000

20 50 100 200 500

|N | (×1000)

(iterations)

⋆

⋆
⋆

⋆

⋆

�

�

�

�

�

+

+

+

+

+

×
×

×

×

×

△
△

△

△

△

♦
♦

♦

♦

♦

(d) Iterations

Fig. 13. Link traversal search vs DFS: varying number of nodes.

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦

0.1

1

10

100

1000

0.2 0.4 0.6 0.8 1

α

(sec)

⋆

⋆
⋆

⋆ ⋆

�

�
�

�
�

+ + +
+

+
×

× × × ×△
△ △ △ △

♦ ♦ ♦ ♦
♦

(a) Execution time

0.1

1

10

100

1000

0.2 0.4 0.6 0.8 1

α

(I/Os)

� � � � �

+
+ + + +

×
× × × ×

△
△ △ △ △♦

♦ ♦ ♦ ♦

(b) Initialization cost

0.01

0.1

1

10

100

0.2 0.4 0.6 0.8 1

α

(KB)

⋆ ⋆ ⋆ ⋆ ⋆

�
� � � �

+
+

+ + +

×
×

× × ×

△
△

△ △ △

♦
♦

♦ ♦ ♦

(c) Target list size

1

10

100

1000

10000

100000

0.2 0.4 0.6 0.8 1

α

(iterations)

⋆
⋆

⋆ ⋆ ⋆

�
�

�
� �

+

+
+

+
+

×
×

×
×

×

△
△

△
△

△

♦
♦

♦
♦

♦

(d) Iterations

Fig. 14. Link traversal search vs DFS: varying links/nodes ratio.

initialization cost is independent of the number of nodes.
The total execution time of DFS and LTS increases with

|N |, as they perform more iterations. This also holds for
LTST, LTS-k for collections of more than 100,000 nodes.
For fewer nodes, the initialization cost of LTST, LTS-k
(see Figure 13(b)) dominates the total execution time,
which decreases. In the worst case, LTS and LTST are
1.6 and 16 times, respectively, faster than DFS.

Varying the links/nodes ratio α. As α increases the
link frequency decreases and finding a path becomes
more difficult, as shown in Figure 14(d). For the reasons
discussed in the case of varying |N |, the target list of

all methods decreases with |N | (see Figure 14(c)), and
the initialization cost of LTST and LTS-k decreases (see
Figure 14(b)). Correspondingly, the total execution time
increases for DFS and LTS, while it first decreases and
ultimately increases for LTST and LTS-k.

6.3.3 PATH queries with no answer
We study the performance of LTS, LTST and LTS-k
compared to DFS for queries that return no answer,
i.e., no path exists between the source and the target.
The collections in this section, induce a reduced routes
graph with two components that share no edge. We
perform 5, 000 PATH queries selecting the source from one

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦

0

50

100

150

200

250

300

20 50 100 200 500

|R| (×1000)

(sec)

⋆
⋆ ⋆ ⋆ ⋆

�
� � � �

+
+ + + +

×
× × × ×

△
△ △ △ △

♦
♦ ♦ ♦ ♦

(a) Execution time

0
50

100
150
200
250
300
350
400

20 50 100 200 500

|R| (×1000)

(I/Os)

� � � � �+ + +
+

+

× ×
×

×

×

△ △
△

△

△

♦ ♦ ♦ ♦

♦

(b) Initialization cost

0

200

400

600

800

1000

1200

20 50 100 200 500

|N | (×1000)

(sec)

⋆
⋆

⋆

⋆

⋆

�
�

�

�

�

+
+

+

+

+

×
×

×

×

×

△
△

△

△

△

♦
♦

♦

♦

♦

(c) Execution time

0
50

100
150
200
250
300
350
400

20 50 100 200 500

|N | (×1000)

(I/Os)

� � � � �

+

+
+ + +

×

×
×

× ×

△

△

△
△ △

♦

♦ ♦ ♦ ♦

(d) Initialization cost

Fig. 15. PATH queries with no answer: execution time and initialization cost.

component and the target from the other so that a path
never exists.

Figures 15(a) and 15(b) display the total execution time
and the cost of the initialization phase while the number
of routes varies. In accordance to Figure 11(b), the initial-
ization cost of LTST and LTS-k increases with |R|, while
that of LTS remains fixed. In the core phase, all methods
perform the same iterations, traversing all links in the
component of the source. The number of links in the
component do not change with |R|. Furthermore, since
the execution time is dominated by the traversal cost,
all methods require around 250 seconds to determine
that a path does not exist, as shown in Figure 15(b). The
total execution time of LTST and LTS-k, slightly increases
with |R| due to the higher initialization cost. In the worst
case, the overhead is less than 1.3%.

Figures 15(c) and 15(d) repeat the measurements while
the number of nodes varies. As before, the execution
time is dominated by the cost of the core phase, which
is identical for all methods. However, since the number
of nodes in the source component increases, the perfor-
mance of all methods degrades with N . In the worst case,
when N = 20K, LTS-5 is about 6% slower than DFS.

6.4 Index Maintenance

In this section, we evaluate the performance of all meth-
ods in terms of (1) the cost of the buffering phase, (2)
the cost of the flushing phase, and (3) the performance
hit introduced by not immediately updating the indices,
while routes are added and deleted from a collection
initially containing 50,000 routes of length Lr = 10 and
100,000 nodes with the fraction of α = 0.6 being links.

At the buffering phase, each insertion and deletion is
treated independently. Thus, we only discuss the case of
a single update. All methods require no disk access for
a deletion. RTS performs no I/O for an insertion. DFS,
LTS, and LTS-k must retrieve for each node in the new
route that becomes a link, its other route; with Lr = 10
and α = 0.6, this costs 4 random I/Os (and maybe a
few sequential I/Os). RTST and LTST (in addition to
the operations needed by LTS) must retrieve from disk
the routes[]/routes+[] list for each link in the route; with
Lr = 10 and all nodes becoming links this costs 10
random I/Os (and maybe a few sequential I/Os).

Figure 16(a) shows the cost of the flushing phase as
we vary the number of updates from 1,000 to 20,000;
the ratio of insertions to deletions is fixed to 75%/25%.

The values above the RTST (resp. LTST) line measure
the time required for updating T -Index only. The cost
of all methods increases sublinearly justifying our lazy
updates strategy. Note that the flushing cost of DFS, LTS,
LTS-k is higher than the cost of RTS due to the additional
pages retrieved when nodes become links. The same
observations hold for LTST and RTST. An important
observation is that for more than 15,000 updates, the
flushing cost for the R-Index/R-Index+ based methods
is higher than building the indices from scratch. On the
other hand, even when 20,000 updates occur (40% of
|R|), the flushing cost for the T -Index based methods is
lower than the cost of rebuilding indices.

Figure 16(b) investigates the cost for 10,000 updates as
we vary the insertions/deletions ratio. When the number
of deletions increases, the GT contains fewer edges and
the cost to update T -Index becomes smaller. As before,
the values above the RTST (resp. LTST) line measure the
time required for updating T -Index only.

Finally, we study how our lazy updating strategy af-
fects the performance of all methods. We investigate two
scenarios: the first assumes that the flushing phase has
been performed, and the second assumes the opposite.
Intuitively, the former simulates the ideal scenario where
all updates are immediately reflected on the disk resident
indices. We perform 5,000 PATH queries and measure the
relative performance of each method, i.e., its execution time
in the second scenario divided by that of the first.

Figure 16(c) shows the performance hit as we vary
the number of updates while the insertions/deletions
ratio is fixed to 75%/25%. The execution time of all
methods increases with the number of updates but stays
within 13% of the execution time in the ideal scenario.
Figure 16(d) keeps the number of updates fixed to 10,000
and varies the insertions/deletions ratio. In this setting,
the performance hit of the RTS and RTST becomes more
pronounced as the number of deletions increases. Note
that it is possible for a method to execute faster when
the flushing has not been performed, as parts of the
disk-based indices are kept in memory. This appears in
Figure 16(d) at the 100%/0% insertions/deletions ratio.

7 CONCLUSIONS

We consider the problem of evaluating path queries
on large disk-resident routes collections that are fre-
quently updated. We introduced two generic search-

BOUROS et al.: EVALUATING PATH QUERIES OVER FREQUENTLY UPDATED ROUTE COLLECTIONS 15

RTST RTS DFS ⋆ LTS � LTS-3 × LTST ♦

0

500

1000

1500

2000

2500

3000

3500

1 5 10 15 20

number of updates (×1000)

(sec)

600

870
900

960
1000

♦

♦
♦

♦
♦

�

�
�

�
�

×

×
×

×
×

⋆

⋆
⋆

⋆
⋆

(a) Flushing cost

800
1000
1200
1400
1600
1800
2000
2200
2400

100/0 75/25 50/50 25/75 0/100

insertions/deletions (%)

(sec)

1000 900 830
760

680
♦ ♦

♦
♦

♦

� � � � �× × × × ×⋆ ⋆ ⋆ ⋆ ⋆

(b) Flushing cost

1

1.05

1.1

1.15

1.2

1 5 10 15 20

number of updates (×1000)

(ratio)

♦
♦

♦

♦
♦

� �
�

�

�

×
× ×

×

×

⋆ ⋆ ⋆
⋆

⋆

(c) Relative performance

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

100/0 75/25 50/50 25/75 0/100

insertions/deletions (%)

(ratio)

♦ ♦ ♦ ♦ ♦� � � � �× × × × ×
⋆ ⋆ ⋆ ⋆ ⋆

(d) Relative performance

Fig. 16. Updating route collections.

based paradigms, route traversal search and link traver-
sal search, that exploit local transitivity information to
expedite path query evaluation. The involved index
structures and their maintenance strategies are designed
to cope with frequent updates.

REFERENCES

[1] P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Sacharidis, and T. K.
Sellis, “Evaluating reachability queries over path collections,” in
SSDBM, 2009, pp. 398–416.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, Second Edition. The MIT Press and McGraw-
Hill Book Company, 2001.

[3] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability
and distance queries via 2-hop labels,” in SODA, 2002, pp. 937–
946.

[4] R. Schenkel, A. Theobald, and G. Weikum, “Hopi: An efficient
connection index for complex xml document collections,” in
EDBT, 2004, pp. 237–255.

[5] ——, “Efficient creation and incremental maintenance of the hopi
index for complex xml document collections,” in ICDE, 2005, pp.
360–371.

[6] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast computation
of reachability labeling for large graphs,” in EDBT, 2006, pp. 961–
979.

[7] ——, “Fast computing reachability labelings for large graphs with
high compression rate,” in EDBT, 2008, pp. 193–204.

[8] R. Bramandia, B. Choi, and W. K. Ng, “On incremental mainte-
nance of 2-hop labeling of graphs,” in WWW, 2008, pp. 845–854.

[9] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-
compression indexing scheme for reachability query,” in SIGMOD
Conference, 2009, pp. 813–826.

[10] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient manage-
ment of transitive relationships in large data and knowledge
bases,” in SIGMOD Conference, 1989, pp. 253–262.

[11] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, “Dual labeling:
Answering graph reachability queries in constant time,” in ICDE,
2006, p. 75.

[12] S. Trißl and U. Leser, “Fast and practical indexing and querying
of very large graphs,” in SIGMOD Conference, 2007, pp. 845–856.

[13] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently answering
reachability queries on very large directed graphs,” in SIGMOD
Conference, 2008, pp. 595–608.

[14] R. Agrawal and H. V. Jagadish, “Direct algorithms for computing
the transitive closure of database relations,” in VLDB, 1987, pp.
255–266.

[15] H. Lu, “New strategies for computing the transitive closure of a
database relation,” in VLDB, 1987, pp. 267–274.

[16] Y. E. Ioannidis and R. Ramakrishnan, “Efficient transitive closure
algorithms,” in VLDB, 1988, pp. 382–394.

[17] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability
and distance queries via 2-hop labels,” SIAM J. Comput., vol. 32,
no. 5, pp. 1338–1355, 2003.

[18] D. S. Johnson, “Approximation algorithms for combinatorial
problems,” Journal of Computer and System Sciences, vol. 9, no. 3,
pp. 256–278, 1974.

[19] J. Zobel and A. Moffat, “Inverted files for text search engines,”
ACM Comput. Surv., vol. 38, no. 2, 2006.

Panagiotis Bouros is a PhD Student at the
School of Electrical and Computer Engineering
of the National Technical University of Athens,
Greece. He received his Diploma degree from
the National Technical University of Athens. His
research interests include spatial databases,
query evaluation, indexing, and Web personal-
ization.

Dimitris Sacharidis is a Marie Curie Postdoc-
toral Fellow at the Institute for the Manage-
ment of Information Systems, Greece, and at
the Hong Kong University of Science and Tech-
nology. He received his BSc and PhD degree
from the National Technical University of Athens,
his MSc degree from the University of South-
ern California. His research interests include
data streams, privacy, security, and ranking in
databases.

Theodore Dalamagas is a researcher at the
Institute for the Management of Information Sys-
tems, Greece. He received his Diploma and
his PhD from the National Technical University
of Athens, Greece, and his MSc from Glas-
gow University, Scotland. He was a lecturer at
the University of Peloponnese. His research in-
terests include intelligent information retrieval,
data clustering methods, data semantics, tree-
pattern query processing, data integration, and
sequence data management.

Spiros Skiadopoulos is an assistant professor
at the University of Peloponnese. He received
the diploma and PhD degree from the National
Technical University of Athens and the MSc de-
gree from UMIST. His research interests include
spatial, temporal and constraint databases, con-
straint databases, query evaluation and opti-
mization, and constraint reasoning.

Timos Sellis is the Director of the Institute for
the Management of Information Systems (IMIS)
and a Professor at the National Technical Uni-
versity of Athens (NTUA), Greece. He received
his Diploma from NTUA, his MSc degree from
Harvard University, and his PhD from the Uni-
versity of California at Berkeley, where he was a
member of the INGRES group. He was an Asso-
ciate Professor at the Department of Computer
Science of the University of Maryland, College
Park. He has received the Presidential Young

Investigator award for 1990-1995 and the VLDB 1997 10 Year Paper
Award for his work on spatial databases. He was the president of the
National Council for Research and Technology of Greece (2001-2003)
and a member of the VLDB Endowment (1996-2000). His research in-
terests include data streams, peer-to-peer databases, data warehouses,
the integration of Web and databases, and spatio-temporal databases.

