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Abstract—As the rate at which scientific work is published continues to increase, so does the need to discern high-impact
publications. In recent years, there have been several approaches that seek to rank publications based on their expected
citation-based impact. Despite this level of attention, this research area has not been systematically studied. Past literature often fails to
distinguish between short-term impact, the current popularity of an article, and long-term impact, the overall influence of an article.
Moreover, the evaluation methodologies applied vary widely and are inconsistent. In this work, we aim to fill these gaps, studying
impact-based ranking theoretically and experimentally. First, we provide explicit definitions for short-term and long-term impact, and
introduce the associated ranking problems. Then, we identify and classify the most important ideas employed by state-of-the-art
methods. After studying various evaluation methodologies of the literature, we propose a specific benchmark framework that can help
us better differentiate effectiveness across impact aspects. Using this framework we investigate: (1) the practical difference between
ranking by short- and long-term impact, and (2) the effectiveness and efficiency of ranking methods in different settings. To avoid
reporting results that are discipline-dependent, we perform our experiments using four datasets from different scientific disciplines.

Index Terms—Bibliometrics, Information Retrieval, Data Mining

F

1 INTRODUCTION

IN the last decades, the growth rate of scientific pub-
lications, colloquially called papers, has been increasing

— a trend that is expected to continue [1], [2]. This is
not only due to the increase in the number of researchers
worldwide [3], but also to the growing competition that
pressures them to continuously produce publishable results,
a trend known as “publish or perish” [4]. Meanwhile, large
amounts of relevant data (e.g., manuscripts, citations, suppl.
datasets) are being made publicly available thanks to open
science initiatives (e.g., BOAI1, cOAlation S2, I4OC3).

Conventional query-dependent ranking mechanisms
have been used to help researchers identify useful results
and interesting insights from these data. These mechanisms
rank documents based on their relevance to user-provided
queries. However, popular query terms may result in thou-
sands of relevant papers, with a large portion of them being
of lower quality — “publish or perish” has been notoriously
correlated with a significant drop in the average quality
of scientific papers [5], [6]. It is thus apparent that such
techniques should be combined with query-independent
(also known as static-rank) methods that seek to rank papers
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based on their impact.4

While the impact of a paper “may be measured and
understood in many different ways” [7] (e.g., down-
loads/views, social media attention), in this work we focus
on citation-based impact, hereafter simply called impact.
This only depends on the network formed from the citations
that papers make. A multitude of researchers from various
disciplines have proposed several paper ranking methods
in recent years following this notion of scientific impact.
Despite this level of attention, the field has not been sys-
tematically reviewed, let alone experimentally analyzed, for
various reasons.

First of all, methods are often introduced by scientists
of different disciplines, with each team ignoring the work of
the other during evaluation. It has been additionally pointed
out that there is “no comprehensive evaluation metric that
is acknowledged by the academic community” for paper
ranking methods [8]. To make things worse, in many cases
different datasets and different experimental methodologies
are used to evaluate the effectiveness of each method. As
recently reported [9], developing benchmarks on unified
and consistent scholarly datasets to enable the objective
quantification of paper impact remains an important open
issue in the field.

Moreover, hitherto literature overlooks the fact that the
impact of a paper may be captured either in the short- or in
the long-term. For example, an experienced researcher usu-
ally needs to search for popular papers, i.e., with high short-
term impact, which are currently the focal point of the scien-
tific community and which will gather many citations in the

4. Indicative of the importance to the field of developing effective
static-rank methods is the WSDM Cup 2016.
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following years. On the other hand, another researcher may
be interested in the influential papers, i.e., with high long-
term impact, which have shaped the discipline she wants to
delve in. Depending on user need, a different impact aspect
might be preferable. As we later show, ranking methods de-
signed with a particular impact aspect in mind may produce
better ranking w.r.t. a different aspect. The settings in which
a method is more advantageous and, more importantly, the
particular features that make it superior in these settings,
have not been adequately investigated in the past.

This work studies impact-based paper ranking methods,
both theoretically and experimentally, based on their ability
to capture the long-term (influence) and short-term (pop-
ularity) impact of papers. To the best of our knowledge,
there is no systematic study examining both impact aspects,
their differences, and how existing ranking methods define
and exploit them. We discern only three related studies. The
first [10] is a rather outdated experimental study of Web-
inspired ranking methods, which inevitably ignores many
popular existing approaches. Moreover, it does not evaluate
against different impact aspects, and only includes experi-
ments with papers from a single discipline (computer sci-
ence), failing to provide generalizable conclusions. The sec-
ond [9] provides a rather brief high-level categorization of
the existing literature on paper impact measures, while the
third [11] overlooks many relevant approaches. In addition,
these last two studies fail to discern common ideas behind
the methods proposed and elaborate on their differences.
More importantly, though, no experimental comparison is
provided.

The contributions of our work are the following:
• We posit that a great part of impact-based paper rank-

ing methods capture one of two distinct paper impact
aspects: influence and popularity, and we define the
corresponding ranking problems (Section 2).
• We identify and classify the most important ideas em-

ployed in the literature, and further show how each
method combines these ideas (Section 3).
• We study the various methodologies used in the ex-

perimental evaluation of paper ranking methods (Sec-
tion 4).
• Based on our theoretical study of ranking methods, we

carefully select a subset of them so that (1) they are
representative of the entire field, and (2) we can draw
conclusions about which specific idea is helpful for each
impact aspect. Moreover, building on the classification
of evaluation methodologies, we propose a specific
benchmark framework that can help us differentiate
between methods and impact aspects (Section 5).
• Our experimental evaluation uses four large datasets

coming from different disciplines (two fields of physics,
computer science, and life sciences) to avoid reporting
results that are discipline-dependent. Our study has
three goals. First, we want to investigate how distinct
the notions of popularity and influence are in practice
(Section 5.2). Second, we want to reveal which ranking
methods and ideas perform best for influence (Sec-
tion 5.3) and which for popularity (Section 5.4). Third,
we want to examine how quickly iterative methods
converge (Section 5.5).
• Last but not least, we provide scalable, open source im-

plementations5 for all experimentally validated meth-
ods in our study.

2 PROBLEM STATEMENT

We first present some background, and then proceed to
introduce the two impact-based paper ranking problems we
study.

2.1 Preliminaries

Citation Network. A citation network is a graph that has
papers as nodes, and citations as edges. For a paper node,
an outgoing (incoming) edge represents a reference to (from)
another paper. A citation network is an evolving graph.
While nodes’ out-degrees remain constant, in-degrees in-
crease over time when papers receive new references.

A citation network of N papers can be represented by
the adjacency matrix A, where the entry Ai,j = 1 if paper j
cites paper i, i.e., there exists an edge j → i in the network,
and 0 otherwise. We denote as ti the publication time of paper
i; this corresponds to the time when node i and its outgoing
edges appear in the network.

In the following, we overview two node centrality met-
rics for citation networks.
Citation Count. The citation count of a paper i is the
in-degree of its corresponding node, computed as ki =∑
j Ai,j . Note that we use kouti to denote the out-degree

of paper i, i.e., the number of references paper i makes to
other papers.
PageRank score. PageRank [12], [13] was introduced to
measure the importance of a Web page. In the context of
citation networks, the method simulates the behaviour of
a “random researcher” that starts her work by reading a
paper. Then, she either picks another paper to read from
the reference list, or chooses any other paper in the network
at random. The PageRank score of a paper i indicates the
probability of a random researcher reading it, and satisfies:

si = α
∑
j

Pi,jsj + (1− α)vi (1)

where P is the network’s transition matrix, Pi,j =
Ai,j/k

out
j , and koutj is the out-degree of node j; (1 − α)

is the random jump probability, controlling how often the
researcher chooses to read a random paper; and vi is the
landing probability of reaching node i after a random jump.
Typically, each page is given a uniform landing probability
of vi = 1/N . Note that in the case of “dangling nodes”,
which contain no outgoing edges, i.e., nodes j with out-
degree koutj = 0, the value of the transition matrix is
undefined. To address this, the standard technique is to set
Pi,j = 1/N , or to some other landing probability, whenever
koutj = 0.

In the case of citation networks, researchers [14], [15]
usually set α = 0.5, instead of 0.85, which is typically used
for the Web. The assumption is that a researcher moves by
following references once, on average, before choosing a
random paper to read. An in-depth analysis of PageRank
and its mathematical properties can be found in [16].

5. https://github.com/diwis/PaperRanking
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2.2 Rank by Influence and Popularity
Using the aforementioned node centrality metrics to capture
the impact of a paper can introduce biases, e.g., against
recent papers, and may render important papers harder
to distinguish [14], [17], [18]. This is due to the inherent
characteristics of citation networks, the most prominent of
which is the delay between a paper’s publication and its first
citation, also known as “citation lag” [19], [20], [21], [22].
Thus, impact metrics should also account for the evolution
of citation networks.

In this section, we formalize two citation network-based
impact aspects that have been employed in the past, and
which constitute the focus of our work. They are both based
on node centrality metrics computed using future states of
the citation network. Therefore, all methods that target these
aspects, need to predict the ranking of papers according to
an unknown future state. For what follows, let A(t) denote
the snapshot of the adjacency matrix at time t, i.e., including
only papers published until t and their citations. Further, let
tc denote current time.
Influence. The first impact aspect captures the long-term
impact of a paper. The influence of a paper is its centrality
metric at the citation network’s ultimate state A(∞) [23].
Based on the above, the following problem can be defined:
Problem 1. Given the state of the citation network at current

time tc, produce a ranking of papers that matches their
ranking by influence, i.e., their expected centrality at
state A(∞).

Popularity. The second impact aspect captures the current,
short-term impact of papers, which reflects the level of
attention a paper enjoys at present, e.g., as researchers study
it and base their work on it. The short-term impact can only
be quantified by the citations a paper receives in the near
future, i.e., once those citing papers are published. Exactly
how long in the future one should wait for citations depends
on the typical duration of the research cycle (preparation,
peer-reviewing, and publishing) specific to each scientific
discipline. Assuming this duration is T , the popularity of
a paper is its centrality metric computed on the adjacency
matrix A(tc + T ) −A(tc). Note that this matrix contains a
non-zero entry only for citations made during the [tc, tc+T ]
time interval.

If the centrality is citation count, popularity essentially
counts the number of citations a paper receives in the near
future. On the other hand, when popularity is defined by
PageRank, it portrays the significance endowed to a paper
by citation chains that occur during that time interval. Based
on the above, the following problem can be defined:
Problem 2. Given the state of the citation network at cur-

rent time tc, produce a ranking of papers that matches
their ranking by popularity, i.e., their expected centrality
on adjacency matrix A(tc + T ) − A(tc), where T is a
parameter.

3 OVERVIEW AND CLASSIFICATION OF RANKING
METHODS

In the following sections, we present a high-level overview
of the various methods proposed for network-based ranking

of scientific papers. Our goal is to identify the most im-
portant ideas that appear in the literature, and show how
these ideas are adopted. We classify based on two main
dimensions. The first concerns the type of time-awareness
the methods employ. Here, we distinguish among no time-
awareness, where simple adaptations of PageRank are pro-
posed (Section 3.1); time-aware modifications in the adja-
cency matrix (Section 3.2); and time-awareness in the land-
ing probability of a paper (Section 3.3). The second dimen-
sion is on the use of side information, where we discern
between the exploitation of paper metadata (Section 3.4),
and the analysis over multiple networks, e.g., paper-paper,
paper-author, venue-paper (Section 3.5). Moreover, we cover
methods that aggregate the results of multiple approaches
that fall into one or several of the aforementioned categories
(Section 3.6), and some that do not fit our classification
(Section 3.7). Table 1 presents a classification summary.

3.1 Basic PageRank Variants

Here we refer to variations of PageRank’s transition matrix
P , which utilize neither metadata nor time-based informa-
tion. In each iteration, Non-Linear PageRank [24] computes
a paper’s score by summing the scores of its in-neighbors
raised to the power of θ, and then taking its θ root, for some
0 < θ < 1. The effect is that the contribution from other
important works is boosted, while the effect of citations
from less important works is suppressed. SPRank [25], on
the other hand, incorporates a similarity score in the tran-
sition matrix P , which is calculated based on the overlap
of common references between the citing and cited papers.
In this way it simulates a focused researcher that tends to
read similar papers to the one she currently reads. Another
approach is SCEAS [10] that modifies PageRank’s transition
matrix by multiplying each entry by a quantity q ∈ (0, 1),
heavily decreasing the impact of longer paths to a particular
paper’s score. PrestigeRank [27] applies PageRank on a cita-
tion network that is artificially expanded by a virtual node.
This node corresponds to all papers with citations given to,
or received by papers not included in the dataset. The aim
is to provide a fair ranking in cases where, for example,
only few papers from a long reference list are included in
the dataset, and thus are promoted by the citing paper more
than they should. Finally, Focused PageRank [26] multiplies
each item in the transition matrix with the percentage of
each paper’s citation count in a reference list, in an attempt
to give advantage to the most cited papers.

3.2 Time-Aware Adjacency Matrix

The adjacency matrix A can include time quantities as
weights on citation edges. There are three time quantities
of interest, denoted as τij , concerning a citation j → i:
• citation age, or citing paper age, the elapsed time t − tj

since the publication of the citing paper j,
• citation gap, the elapsed time tj − ti from i’s publication

until its citation from j, and
• cited paper age, the elapsed time, t− ti since the publica-

tion of the cited paper i.
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TABLE 1: Classification of Ranking Methods; bold font indicates the methods evaluated in the experimental section.

Method Basic PR variants Time Aware Metadata Multiple Networks Ensemble OtherNetwork Matrix Landing Probability Venue Author
Non-Linear PageRank (NPR) [24] X
SPR [25] X
SCEAS [10] X
Focused PageRank [26] X
PrestigeRank [27] X
Weighted Citation (WC) [28] X X
Retained Adjacency Matrix (RAM) [29] X
Timed PageRank [18], [30] X X X
Effective Contagion Matrix (ECM) [29] X
NewRank (NR) [8] X X
NTUWeightedPR [31] X X X X
EWPR [32] X X X X
SARank [11] X X X X
CiteRank (CR) [33] X
FutureRank (FR) [34] X X X
MR-Rank [35] X X X
P-Rank [36] X X X
YetRank (YR) [17] X X
Wang et al. [37] X X X X
COIRank. [38] X X X X
PopRank [39] X
MutualRank [40] X
Tri-Rank [41] X X X
NTUTriPartite (WSDM) [42] X X X X
NTUEnsemble [43] X X X X X X
bletchleypark [44] X X X X
ALEF [45] X X
S-RCR [46] X
Citation Wake [47] X
Age-Rescaled PR [48] X
Age- & Field- Rescaled PR [49] X
Bai et al. [50] X

The prevalent way to infuse time-awareness into the
adjacency matrix is to weigh each non-zero entry Ai,j by
an exponentially decaying function of τij :

A′i,j = κe−γτijAi,j ,

where γ > 0 is the decay rate, and κ represents additional
factors and/or a normalisation term.

If τij is set to the citation age, recent citations gain greater
importance. If τij is set to the citation gap, citations received
shortly after a paper is published gain greater importance.
If τij is set to the cited paper age, citations to more recently
published papers gain greater importance. While it is pos-
sible to weigh citations based on any combination of these
time quantities, we have not seen such an approach.

The effect of a time-aware adjacency matrix on degree
centrality (citation count) is immediate:

∑
j A
′
i,j denotes a

weighted citation count. This approach is taken by Weighted
Citation [28] and MR-Rank [35] using citation gap, and by
Retained Adjacency Matrix [29] using citation age.

In PageRank-like methods, the importance of a citation
depends not only on the importance the citing paper carries,
but also on a citation’s time quantity. Timed PageRank [18],
[30], and NewRank [8] adopt this idea using exponentially
decayed citation, or cited paper age, and thus compute the
score of paper i with a formula of the form:

si = α
∑
j

κe−γτijPi,jsj + (1− α)vi (2)

Effective Contagion Matrix [29], is another time-aware
method using citation age. However it is not based on
PageRank, but on Katz centrality [51], i.e., compared to
Equation 2 it uses the adjacency matrix A and does
not calculate random jump probabilities. Other time-aware
weights have also been proposed. For example, [31] uses
a weight based on the ratio of the cited paper’s number of

citations divided by its age. Further, [32] and its extension
called SARank [11] uses a citation age-based exponentially
decaying weight, but only when the cited paper has reached
its citation peak, i.e., the year receiving its largest number of
citations.

3.3 Time-Aware Landing Probabilities

In PageRank and several PageRank-like methods, papers
are assumed to all have an equal landing probability, but
in several cases non-uniform probabilities are assigned. We
denote as vi the landing probability assigned to paper i. Past
works assign landing probabilities that decay exponentially
with the paper’s age, i.e.,

vi = κe−γ(t−ti).

This implies that newer papers have higher visibility
than old ones. Note the contrast between the time quantities
described in Section 3.2, which refer to edges, and the single
time quantity, paper age, that concerns nodes.

We discern two ways in which landing probabilities can
affect the network process. The first is in the probabilities
of visiting a node after a random jump, similar in spirit to
topic-sensitive [52] and personalised [53] PageRank. Cite-
Rank [33], FutureRank [34], YetRank [17], and NewRank [8]
compute the score of paper i with a formula of the form:

si = α
∑
j

Pi,jsj + (1− α)κe−γ(t−ti).

To be precise, NewRank also employs a time-aware
transition matrix as per Section 3.2, while the process in
FutureRank involves an additional authorship matrix for the
paper-author network, as discussed in Section 3.5.

The second way is more subtle and concerns dangling
nodes. Recall that the standard approach is to create artificial
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edges to all other nodes assigning uniform transition prob-
abilities. Instead, YetRank [17] assigns exponential decaying
transition probabilities to dangling nodes as

Pi,j = κe−γ(t−ti), for all i, j : koutj = 0.

3.4 Paper Metadata
Ranking methods may utilize paper metadata, such as au-
thor and venue information. Scores based on these metadata
can be derived either through simple statistics calculated
on paper scores (e.g., average paper scores for authors or
venues), or from well-established measures such as the
Journal Impact Factor [54], or the Eigenfactor [55].

The majority of approaches in this category incorporates
paper metadata in PageRank-like models, to modify cita-
tion, or transition matrices and/or landing probabilities.
Weighted Citation [28] modifies citation matrix A using
weights based on the citing paper’s publication journal.
Thus, the method gives higher importance to citations made
by papers published in high rank venues. YetRank [17]
modifies PageRank’s transition matrix P and landing prob-
abilities v. Particularly it uses journal impact factors to
determine the likelihood of choosing a paper when starting
a new random walk, or when moving from a dangling
node to any other paper. This way, it simulates researchers
that prefer choosing papers published in prestigious venues
when beginning a random walk. NTUWeightedPR [31]
modifies transition matrix P and landing probabilities v.
It uses weights calculated based on the cited paper’s author,
venue, and citation rate information, to simulate a “focused”
researcher, who prefers following references to, or initiating
a random walk from papers that are written by well-known
authors, published in prestigious venues, and which receive
many citations per year.

An alternative to the above approaches is presented in
Timed PageRank [18], [30], which calculates the scores of
recent papers, for which only limited citation information is
currently available, solely based on metadata, while using a
time-aware PageRank model for the rest. Particularly, scores
for new papers are calculated based on averages (or similar
statistics) of their authors’ other paper scores, or based on
average paper scores (or similar statistics) of other papers
published in the same venue.

3.5 Multiple Networks
Ranking methods may also employ iterative processes
on multiple interconnected networks (e.g., author-paper,
venue-paper networks, etc.) in addition to the basic citation
network. We can broadly discern two approaches: the first
approach is based on mutual reinforcement, an idea orig-
inating from HITS [56]. In this approach ranking methods
perform calculations on bipartite graphs where nodes on
either side of the graph mutually reinforce each other (e.g.,
paper scores are used to calculate author scores and vice
versa), in addition to calculations on homogeneous net-
works (e.g. paper-paper, author-author, etc). In the second
approach, a single graph spanning heterogeneous nodes is
used for all calculations.

The first of the aforementioned approaches is followed
by FutureRank [34], P-Rank [36], MR-Rank [40], Wang et

al. [37], COIRank [38] and Tri-Rank [41]. FutureRank com-
bines PageRank on the citation graph with an author-paper
score reinforcement calculation and an age-based factor. P-
Rank uses both PageRank and mutual reinforcement calcu-
lations on author-paper and paper-venue graphs. MR-Rank
uses a bipartite paper-venue graph, along with PageRank
calculations on paper and venue graphs to rank papers and
venues using linear combinations of their scores. Wang et
al. use paper-venue and paper-author bipartite networks,
as well as time-based weights to rank papers, authors, and
venues. COIRank extends this model by modifying paper
citation edges when their authors have previously collabo-
rated, or when they work at the same institution. The goal is
to reduce the effect of artificially boosted citation counts. Fi-
nally, Tri-Rank uses paper-author, paper-venue, and author-
venue bipartite networks. It uses mutual reinforcement to
iteratively calculate venue, paper, and author scores, alter-
natively using these bipartite networks and homogeneous
networks of authors, papers, and venues. Additionally, Tri-
Rank uses various weights applied on edges in these graphs,
e.g., based on self citations between papers, or based on the
order of authors in a paper’s author list.

The second approach to using multiple networks is used
by PopRank [39] and MutualRank [40]. PopRank simu-
lates a “random object finder”, an entity that conducts a
random walk between connected web-pages and objects
representing papers, authors, conferences and journals. The
entity’s transitions from one type of object to another, de-
pend on learned probabilities called popularity propagation
factors. MutualRank uses an adjacency matrix comprised of
3 inter- and 6 intra-network individual adjacency matrices.
The intra-networks are weighted, directed graphs of papers,
authors, and venues, while the inter-networks consist of
edges between the aforementioned graphs (i.e., edges be-
tween papers and authors, etc). MutualRank ranks all of the
aforementioned nodes, based on an eigenvector calculation
on this aggregated adjacency matrix.

3.6 Ensemble Methods

Ensemble methods implement multiple ranking methods,
and combine their results to come up with a single score
per paper. The majority of the 2016 WSDM Cup6 methods
fall in this category. The goal of the Cup was to rank pa-
pers based on their “query-independent importance” using
information from multiple interconnected networks [57].

NTUTriPartite [42], the winning solution of the cup,
aggregates score propagations from various networks with a
linear combination of each paper’s in- and out-degree. This
is done in an iterating fashion, using a predefined and fixed
number of iterations.

NTUEnsemble [43], combines scores from the metadata-
based version of PageRank proposed in NTUWeight-
edPR [31], with the cup’s winning solution [42], and a
method based on Wang et al [37]. In EWPR [32] paper scores
are a combination of time-weighted PageRank scores cal-
culated on a paper graph, time-weighted PageRank venue
scores, calculated on a venue graph, and author scores,
calculated as averages of their authored papers’ PageRank

6. http://www.wsdm-conference.org/2016/wsdm-cup.html

http://www.wsdm-conference.org/2016/wsdm-cup.html
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scores. SARank [11] extends EWPR by including an addi-
tional score for papers based on exponentially weighted
citation counts, as well as additional scores for authors
and papers based on averages of this aforementioned ci-
tation count-based score. In ALEF [45], the authors use
Article Level Eigenfactor (ALEF) (which is a PageRank-
based method), to calculate paper scores. Based on these
scores, they calculate author scores and then combine author
and paper scores as a weighted sum. Finally, in bletchley-
park [44], paper scores result as a linear combination of
citation counts, PageRank scores, paper age, author, and
venue scores, where author and venue scores are based on
aggregations derived from their respective papers.

3.7 Other Methods
We discern a handful of methods that do not fall into any
of the aforementioned categories. S-RCR [46] is a simplified
version of the relative citation ratio RCR [58]. This method
calculates the score for paper i, using its citation ratio
(i.e., the number of citations it has received, divided by
its age) and comparing it to that of all other papers in its
“neighbourhood”. A neighbourhood consists of all papers j
that appear in any reference list together with paper i.
Citation Wake [47] calculates the score of paper i, based on a
normalized weighted sum of the cardinality of sets of papers
j at shortest path distances l from i. Note, that each paper j
is only counted in its shortest path distance from i, thus the
method does not use all different paths that lead to paper
i, but the set sizes of papers at increasing shortest paths.
Age-Rescaled PageRank [48] and Age- and Field-Rescaled
PageRank [49] calculate simple PageRank scores and then
rescale them. In the case of Age-Rescaled PageRanks this
is done based on the mean and standard deviation of the
scores of n papers published before and after each paper in
question. In the case of Age- and Field-Rescaled PageRank
this rescaling is performed only based on papers published
in the same field. Finally, Bai et al. [50] use an algorithm
based on Quantum PageRank [59] where citation weights
are a function of the geographical distance of the institutions
of the citing and cited papers.

4 OVERVIEW AND CLASSIFICATION OF EVALUA-
TION METHODOLOGIES

The ranking methods presented in Section 3 often originate
from various scientific communities, and may have differ-
ent objectives, not always clearly defined. Moreover, each
method is evaluated on diverse datasets, under varying
assumptions and quantified with different metrics. The goal
of this section is to clarify the objectives and classify the
methodologies used in evaluation.

4.1 Evaluation of Ranking Effectiveness

Ground Truth Lists. One way to evaluate effectiveness is to
use a ground truth list of papers that a method is expected to
rank highly. Measures of agreement between lists are then
used to quantify effectiveness. Typically, the ranking objec-
tive is to identify papers with long-term influence. Hence,
the ground truth consists of award winning or selected
important papers [8], [17], [24], [25], [36], [48], or papers

co-authored by award winning authors [47]. This type of
evaluation has inherent drawbacks, in that the lists may be
partial, biased, or not available for certain disciplines.
User Judgements. Another way to evaluate ranking effec-
tiveness is to use user judgments, as in [11], [39], and the
2016 WSDM Cup. In this evaluation type, trained experts
give pairwise comparisons of papers and all rankings are
evaluated against these human annotated data.
Held-Out Data. Another approach, followed by [11], [18],
[24], [25], [29], [30], [33], [34], [35] is to assess how accu-
rately a ranking method can predict the citation network-
based impact aspects defined in Section 2.2. As these impact
aspects are determined by a future state of the citation net-
work, the evaluation approach involves holding out part of
the dataset. Specifically, a timepoint tc is chosen to represent
the current time. This choice essentially creates a present state
of the citation network captured by the adjacency matrix
A(tc), and a future state captured by A(tc + T ), where T
represents a time horizon.

The evaluation proceeds in three steps. First, the ground
truth ranking is produced, according to a desired impact
aspect. In the second step, the ranking method produces
a ranking of papers based solely on the present state of
the citation network. In the third, the agreement of the
method’s produced ranking with the ground truth is quanti-
fied. Regarding the selection of the ground truth in the first
step, work in [18], [29], [30], [33] considers popularity in
terms of citation counts, a case we denote as P-CC; work in
[34] considers popularity with respect to PageRank, which
we denote as P-PR; and [29] considers influence based on
PageRank, which we denote as I-PR. To the best of our
knowledge, there is no work evaluating influence in terms
of citation counts, which we denote as I-CC.

A last point to discuss concerns the choice of tc. Recall
that influence captures the long-term impact, defined by the
expected centrality captured at the network’s state infinite
time units ahead in time. On the one hand, to accurately
estimate influence, we need to consider a future state that is
well ahead the present state, which means a small tc value.
On the other hand, to fairly evaluate a ranking method, we
need to have a sufficiently large present state for it to learn
from, which means a large tc value. Clearly, there are con-
flicting requirements. In the case of popularity tc is always
selected to be close to the latest timestamp of the dataset.
The implications of choosing tc have not been investigated,
where prior work typically sets tc to a particular publication
year, or so that the number of citations in present and future
state have a particular ratio.

4.2 Other Evaluation Approaches

Descriptive Evaluation. There are some approaches that
only indirectly assess ranking effectiveness. Exactly what
is expected of a paper ranking method is however not
apparent. In some cases, the top-ranked papers are provided
along with a rationale of why the resulting ranking is valid
or interesting [8], [14], [15], [18], [27], [30], [34], [47]. More
often, the relationship of the produced ranked list with that
of a baseline (citation count, PageRank, or other methods) is
investigated. Typically, scatter plots [8], [14], [15], [28], [33],
and rank correlation values [15], [25], [27], [35], [41] are used.
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Another approach, taken in [14], [17], is the presentation
of the average rank score per publication year of ranked
papers. This type of evaluation can be useful to demonstrate
that a method does not discriminate much against recently
published papers.
Non-Effectiveness Evaluation. Some studies focus on eval-
uating aspects besides ranking effectiveness. For exam-
ple, [33], [34] present measurements of computation time,
and [25], [34], [35], [41] examine quickness of convergence.
In [24], [25], methods are evaluated in terms of robustness
against malicious behaviour (e.g., self citations). In [18], [30],
[47], a different type of robustness is evaluated, namely the
method’s stability as its parameters are varied.

5 EVALUATION

In this section, we first detail our evaluation methodology
(Section 5.1), including the research questions we pose,
then proceed to answer them (Sections 5.2–5.5), and finally
discuss our findings (Section 5.6).

5.1 Evaluation Methodology
We start by stating our research goals, and then explain how
we set to achieve them, describing the datasets used, the
methods investigated, and the evaluation metrics used.

5.1.1 Research Questions
Our evaluation is centered around the following questions:

RQ1: How distinct are the notions of popularity and
influence, and how distinct are their citation-count and
PageRank flavors? In Section 5.2, we investigate the cor-
relation between ground truth rankings according to I-CC,
I-PR, P-CC, and P-PR. Our objective is to examine their
differences and to verify that they capture different paper
impact aspects.

RQ2: Which ranking methods perform best for each
impact aspect? We evaluate the effectiveness of state-of-
the-art methods in ranking papers based on their influence
(Section 5.3) and popularity (Section 5.4).

RQ3: What is each method’s convergence rate? Most
methods run iteratively until a convergence criterion is satis-
fied. Comparing these methods based on their convergence
rate can reveal trade-offs in terms of the number of iterations
(and, hence, running time) required for them to produce
an effective ranking. This can reveal which method should
be preferred among those exhibiting comparable ranking
effectiveness, in scenarios with time-constraints. Thus, we
evaluate the convergence rate and the execution time of all
the iterative methods (Section 5.5).7

5.1.2 Datasets
For our experiments, we use four datasets:
• hep-th8 of about 30, 000 papers on high energy physics,

from arXiv’s archive published from 1992 to 2003;
• APS9 of about half a million papers from American

Physical Society journals published from 1893 to 2014;

7. Note that this evaluation excludes citation count-based methods,
as well as those running on a fixed number of iterations.

8. http://www.cs.cornell.edu/projects/kddcup/datasets.html
9. http://journals.aps.org/about

• PMC10 of about 1.12 million life sciences open access
papers published from 1896 to 2016;
• DBLP11 of about 3 million papers recorded by DBLP,

published from 1936 to 2018 [60].
We note that the first two datasets have been widely used

in the literature (e.g., [14], [24], [29], [33], [34]), while the
last two are representative of real large collections of papers
(with over a million nodes each), from two prolific scientific
domains, life sciences and computer science.

5.1.3 Ranking Methods
We study the following paper ranking methods, chosen so
as to cover all classes presented in Section 3.
PageRank (PR). This is the algorithm presented in [13].
Non-Linear PageRank (NPR). This is the basic PageRank
variant introduced in [24].
CiteRank (CR). This PageRank variant uses time-aware
landing probabilities [33].
FutureRank (FR). This PageRank variant uses time-aware
landing probabilities and multiple networks [34]. The key
idea is to distribute author scores to their authored papers,
and paper scores to their respective authors, an approach
inspired from HITS [56].
Retained Adjacency Matrix (RAM). This citation count
variant uses a citation age-weighted adjacency matrix [29].
Effective Contagion Matrix (ECM). This Katz centrality-
based method operates over a citation age-weighted adja-
cency matrix [29].
NewRank (NR). This PageRank variant uses a weighted
citation matrix, with weights based on the age of cited
papers, as well as time-aware landing probabilities [8].
YetRank (YR). This PageRank variant employs landing
probabilities that are time-aware and also depend on journal
impact factors, computed over the past five-years [17].
NTUTriPartite (WSDM). This ensemble method is not time-
aware and computes a score for a paper depending on its
authors, venues, citing papers, and in- and out- degrees,
using a fixed set of iterations [42].
Weighted Citation (WC). This citation count variant [28]
uses a citation matrix weighted by citation gap and a func-
tion of the journal Eigenfactor [55], which is an indicator
comparable to the journal impact factor. In our implementa-
tion, we have used Journal Impact Factor instead, computed
over the past five years.

Note that we test the last three methods (YR, WSDM,
WC) only on the PMC and DBLP datasets, which con-
tain information about the journal of each paper, which
these methods require. For each method, we experimented
with the various configurations suggested in the method’s
original paper, but only present results for the one that
performed best in our experiments.

All methods are implemented in Python 2.7 and are
freely available through a GNU GPL licence.12 All exper-
iments were executed on a cluster of 10 VMs (of 4 cores
and 8GBs RAM) provided by okeanos Cloud service [61].

10. ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
11. https://aminer.org/citation
12. https://github.com/diwis/PaperRanking

http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://journals.aps.org/about
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
https://aminer.org/citation
https://github.com/diwis/PaperRanking
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TABLE 2: Pairwise correlations (Spearman’s ρ) of ground truth rankings for different future/present ratios η, per dataset.

hep-th η = 1.2 η = 1.4 η = 1.6 η = 1.8 η = 2
P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR

P-CC 0.690 0.649 0.376 0.747 0.747 0.453 0.775 0.806 0.520 0.790 0.846 0.560 0.794 0.861 0.596
P-PR 0.381 0.568 0.529 0.678 0.609 0.743 0.662 0.786 0.689 0.840
I-CC 0.840 0.823 0.820 0.814 0.817

APS η = 1.2 η = 1.4 η = 1.6 η = 1.8 η = 2
P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR

P-CC 0.834 0.541 0.387 0.869 0.650 0.474 0.883 0.715 0.527 0.889 0.761 0.567 0.884 0.780 0.599
P-PR 0.410 0.594 0.547 0.665 0.626 0.712 0.680 0.747 0.715 0.788
I-CC 0.904 0.895 0.887 0.880 0.876

PMC η = 1.2 η = 1.4 η = 1.6 η = 1.8 η = 2
P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR

P-CC 0.513 0.596 0.390 0.602 0.728 0.487 0.648 0.800 0.548 0.681 0.850 0.584 0.689 0.855 0.620
P-PR 0.223 0.623 0.392 0.769 0.486 0.866 0.562 0.840 0.607 0.934
I-CC 0.871 0.852 0.844 0.812 0.822

DBLP η = 1.2 η = 1.4 η = 1.6 η = 1.8 η = 2
P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR P-PR I-CC I-PR

P-CC 0.757 0.662 0.517 0.803 0.757 0.591 0.825 0.810 0.635 0.837 0.844 0.672 0.835 0.854 0.693
P-PR 0.436 0.761 0.566 0.829 0.641 0.866 0.689 0.908 0.723 0.924
I-CC 0.939 0.927 0.918 0.916 0.910

All iterative methods were run with a convergence error
set to 10−12, to ensure that the final rankings produced
are not subject to change if additional iterations would be
performed.

5.1.4 Evaluation Metrics

To investigate our research questions, we conduct experi-
ments based on the hold-out evaluation approach. Specif-
ically, for each dataset, we fix the value of tc so that the
present state, A(tc), contains half of the total papers in the
dataset. To define the future state, A(tc+ T ), we select T so
that the future/present ratio η, measuring the ratio between
the number of papers that appear in the future state and in
the present state, takes values among {1.2, 1.4, 1.6, 1.8, 2.0},
with 1.6 being the default setting. Then, the ground truth is
constructed from the future and present states, depending
on the impact aspect considered, as detailed in Section 4.1.

For the first research question, we measure the cor-
relation between pairs of ground truth rankings, using
Spearman’s ρ and Kendall’s τ . For the second research
question, we measure the correlation between the ranking of
a method and a ground truth ranking using Spearman’s ρ
and Kendall’s τ , and the method’s ranking accuracy with
respect to the ground truth using top-k precision and nDCG.

Spearman’s ρ is based on the L1 distance of all ranked
items in the two lists [62]. Kendall’s τ is computed based on
the number of concordantly ordered pairs of items between
the two lists [63]. Top-k precision calculates the percentage
of common items among the top-k ranked items in each
list. The discounted cumulative gain (DCG) at rank k of
a paper is computed as DCG@k =

∑k
i=1

rel(i)
log2(i+1) , where

rel(i) is the ground truth score (I-CC, I-PR, P-CC, or P-PR)
of the paper that appears at the i-th position on the method’s
ranking. The normalized DCG at rank k (nDCG@k) is the
paper’s DCG divided by the ideal DCG, achieved when the
method’s ranking coincides with the ground truth. The last
two metrics are computed at a rank k, which takes values
among {5, 10, 50, 100, 500}, with 50 being the default.

5.2 Comparison of Impact Aspects

The first research question investigates the relationship be-
tween the impact aspects. Specifically, we compute correla-
tions among the four ground truth rankings, with respect to
influence, either based on citation count (I-CC) or PageRank
(I-PR), and with respect to popularity, based on citation
count (P-CC) or PageRank (P-PR). Table 2 presents the cor-
relation between pairs of rankings in terms of Spearman’s ρ,
as we vary the future/present ratio η; recall that η = 1.2, for
instance, means that there are 20% more papers in the future
state than in the present. Kendall’s τ correlation shows
similar trends and is, thus, omitted.

A general observation is that all ground truths are at
least weakly correlated (ρ > 0.2) to each other, and in many
cases very strongly (ρ > 0.8).13 This implies a varying level
of agreement among the impact aspects, meaning that the
various impact aspects indeed capture different semantics.

An important observation is that the two flavors of
impact aspect, citation count and PageRank, are correlated,
strongly (ρ > 0.6) for popularity, and very strongly (ρ > 0.8)
for influence. The latter may justify why past work has only
considered one flavor of influence, namely I-PR. On the
other hand, correlations across impact aspects exist, but are
weaker. Naturally, the correlation across aspects is stronger
when the same flavor is compared; e.g., 0.649 between P-
CC, I-CC vs. 0.376 between P-CC, I-PR, for hep-th and
η = 1.2.

Another trend is the increasing correlation between pop-
ularity and influence as the future/present ratio η becomes
larger. Increasing η means that the future state A(tc + T )
grows with respect to the present state A(tc), which is fixed.
Thus, citations and citation chains in A(tc + T ) − A(tc)
tend to become more similar to those in A(tc + T ), making
centrality computed on the former graph closer to that
computed on the latter.

Overall, we conclude that influence and popularity cap-
ture distinct paper impact semantics, which are however

13. We use the interpretation of correlation by Evans [64].
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to some degree correlated14. The two flavors, citation count
and PageRank produce relatively distinct rankings in terms
of popularity, especially when η is small, which is the
preferred setting for popularity. On the other hand, the two
flavors produce highly similar rankings in terms of influ-
ence, particularly for large η values, which is the preferred
mode for influence.

5.3 Influence Ranking Evaluation
This section investigates the second research question for
influence. In Section 5.3.1, we evaluate the performance of
all ranking methods in terms of both flavors of influence. In
subsequent sections and for the interest of space, we focus
on I-PR as it appears more often in past literature. Another
reason is that PageRank-defined influence seems a more rea-
sonable choice, compared to I-CC, to capture the long-term
impact of a paper in its discipline. This is because PageRank
considers the influence not only of works directly citing the
paper of interest, but also works indirectly citing it, through
the citation of its citing papers. Section 5.3.2 investigates the
effect of the future/present ratio, and Section 5.3.3 examines
ranking effectiveness on different top-ranked sets.

5.3.1 Overview of Effectiveness
In this experiment, we fix the future/present ratio to its
default value (η = 1.6) and calculate all evaluation metrics
(ρ, τ , top-50 precision, nDCG@50) quantifying the effec-
tiveness of all ranking methods against the ground truth
for ranking by influence, either based on citation count (I-
CC) or PageRank (I-PR). Tables 3–6 present the results per
dataset. We observe that, with regards to I-CC, RAM is the
best ranking method outperforming others on most datasets
and for most metrics. With regards to I-PR, methods PR and
CR appear to be the winners, with the former achieving the
highest overall correlations (ρ, τ ), and the latter performing
best in terms of top-50 accuracy (precision, nDCG).

Let us first study the ranking by I-CC. We expect citation
count-based methods to perform well in terms of overall
correlation, which is indeed the case with RAM and WC.
Focusing on the top-50 results though, we observe that RAM
is better than WC at distinguishing the most influential
papers. As both methods employ time-aware weights in the
adjacency matrix, we may conclude that citation age (RAM)
is more effective than citation gap (WC). Some further
interesting observations can be made for PageRank-based
methods. Although CR and FR fail to capture the overall
correlation, they perform remarkably well in distinguishing
the top-50 papers. We conjecture this is not because of em-
ploying PageRank (other such methods are not doing well)
but rather in their use of time-aware landing probabilities.
Surprisingly, combining time-aware landing probabilities
and time-awareness in the adjacency matrix does not appear
to help, as shown in the case of NR. Moreover, despite
considering citation chains (and not only direct citations),
ECM performs equally well to RAM. This is partly because
they both use the same type of time-awareness, and partly
because ECM heavily attenuates the importance of long
citation chains. This way ECM is mainly determined by

14. A level of correlation is expected since, for instance, many influ-
ential papers remain relatively popular etc.

TABLE 3: hep-th: metrics for I-CC, I-PR; η = 1.6, k = 50.

hep-th I-CC I-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.734 0.571 0.480 0.645 0.892 0.768 0.780 0.909
NPR 0.675 0.513 0.260 0.482 0.874 0.726 0.480 0.793
CR 0.752 0.571 0.720 0.880 0.822 0.652 0.880 0.967
FR 0.512 0.380 0.740 0.865 0.419 0.300 0.780 0.958

ECM 0.830 0.679 0.400 0.795 0.684 0.509 0.320 0.665
RAM 0.836 0.689 0.700 0.946 0.698 0.524 0.480 0.802
NR 0.307 0.216 0.200 0.470 0.338 0.242 0.300 0.622

TABLE 4: APS: metrics for I-CC, I-PR; η = 1.6, k = 50.

APS I-CC I-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.760 0.603 0.300 0.611 0.897 0.781 0.740 0.955
NPR 0.734 0.576 0.340 0.626 0.888 0.752 0.760 0.952
CR 0.573 0.437 0.600 0.827 0.486 0.357 0.780 0.958
FR 0.486 0.361 0.640 0.840 0.377 0.269 0.620 0.847

ECM 0.692 0.534 0.580 0.846 0.577 0.419 0.340 0.664
RAM 0.692 0.534 0.600 0.837 0.576 0.419 0.340 0.663
NR 0.169 0.120 0.200 0.290 0.030 0.022 0.220 0.379

TABLE 5: PMC: metrics for I-CC, I-PR; η = 1.6, k = 50.

PMC I-CC I-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.726 0.591 0.360 0.652 0.818 0.694 0.840 0.969
NPR 0.708 0.570 0.360 0.649 0.814 0.682 0.780 0.952
CR 0.563 0.426 0.580 0.842 0.603 0.457 0.900 0.990
FR 0.261 0.196 0.580 0.803 0.219 0.161 0.820 0.977

ECM 0.787 0.677 0.800 0.967 0.751 0.594 0.440 0.797
RAM 0.787 0.679 0.820 0.969 0.751 0.596 0.420 0.794
NR 0.183 0.134 0.360 0.555 0.226 0.160 0.580 0.812
YR 0.614 0.469 0.400 0.693 0.618 0.467 0.760 0.938

WSDM 0.567 0.432 0.160 0.478 0.465 0.326 0.140 0.437
WC 0.772 0.649 0.660 0.895 0.737 0.574 0.380 0.715

TABLE 6: DBLP: metrics for I-CC, I-PR; η = 1.6, k = 50.

DBLP I-CC I-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.811 0.673 0.480 0.717 0.884 0.778 0.820 0.981
NPR 0.797 0.655 0.440 0.726 0.880 0.763 0.740 0.965
CR 0.549 0.413 0.740 0.938 0.537 0.402 0.860 0.988
FR 0.389 0.294 0.780 0.947 0.349 0.257 0.720 0.950

ECM 0.845 0.726 0.820 0.966 0.812 0.656 0.520 0.800
RAM 0.845 0.727 0.820 0.966 0.812 0.656 0.520 0.800
NR 0.101 0.074 0.400 0.710 0.050 0.037 0.440 0.714
YR 0.627 0.490 0.620 0.836 0.682 0.553 0.800 0.970

WSDM 0.616 0.465 0.580 0.698 0.593 0.437 0.440 0.688
WC 0.839 0.714 0.480 0.630 0.833 0.682 0.320 0.499

direct citations and hence it largely approximates RAM.
We observe this close relationship between RAM and ECM
across all datasets, impact aspects, and evaluation metrics.

We now turn to I-PR, where we expect PageRank-based
methods to be at an advantage. This is the case, with PR and
NPR being the best methods, with CR and FR achieving
remarkable performance for top-k precision and nDCG.
Plain PR achieves the best effectiveness in terms of ρ, τ
since the general structure of the graph, A(tc), on which
PR runs is largely similar to the graph, A(tc+ T ), on which
the ground truth PageRank is computed. While PR captures
the ranking of all papers well, on average, it is not the
best method when we focus on the top-50 results. CR best
distinguishes highly ranked papers, thanks to its debiasing
mechanism that promotes recently published papers over
older ones whose importance is overestimated by PR. FR
achieves good performance in these scenarios for the same
reason.
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Fig. 1: Correlation of each method’s ranking to that of I-PR,
varying η.

5.3.2 Varying the Future/Present Ratio

In this experiment, we vary the future/present ratio η and
measure effectiveness of all methods against the ground
truth ranking compiled in terms of I-PR. Figure 1 presents
Spearman’s ρ for each method and dataset; Kendall’s τ
results are similar and omitted. As also previously observed,
PageRank-based methods, and particularly PR and NPR,
perform the best in terms of overall correlation; recall that
NPR is a basic PR variant that does not introduce time-
awareness or use external information. The smaller the ratio
η is, the larger the correlation is for these methods. This
is because the difference between the present network and
the future network, on which the I-PR ranking is derived,
is smaller. Interestingly, we observe a group of methods,
CR, FR, and NR, that appear to benefit from an increase
in η. These PageRank-based methods employ time-aware
landing probabilities, and perform rather poorly (except
CR) in terms of overall correlation. What happens is the
following. As η increases, the ground truth ranking begins
to diverge from the simple PageRank-based ranking on the
present network, and the primary cause is that recent papers
get a chance to gain citations and improve their relative
influence with respect to older papers. Time-aware land-
ing probabilities directly account for this phenomenon by
promoting all recent papers. However, not all recent papers
are equally influential, and this explains the relatively small
correlations. Increasing the value of η means that the few
recent papers that are actually influential will gain visibility
in the ranking, and thus the effectiveness of methods that
explicitly promote them (along with other recent papers)
will increase.

Figure 2 investigates the quality of the top-50 papers
returned by each method, and computes their nDCG as
the future/present ratio varies; similar findings hold for
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Fig. 2: nDCG@50 of each method’s ranking with respect to
I-PR, varying η.

top-50 precision. The plain PR method is among the best
methods, but it loses its crown as η increases. Across the
tested η values, CR appears to be the overall best method,
often followed by FR. As previously noted, CR, FR and YR
employ time-aware landing probabilities to explicitly pro-
mote recent papers. When looking at the top ranks, a paper
will appear there if it was already influential (in the present
network) or if it was moderately influential but attracted
many recent citations. CR and FR will identify both types
of papers, while PR can only identify the first type. Another
interesting observation is that time-aware weighing of the
transition/adjacency matrix, used e.g., by RAM, ECM, WC,
NR, is not good for discerning PageRank-defined influen-
tial papers. Their effectiveness, however, quickly increases
with η, indicating a time-aware mechanism is important,
but appears to plateau, suggesting that time-aware landing
probabilities is a better mechanism.

5.3.3 Varying the Number of Results
In the last experiment for influence-based ranking, we
measure the nDCG of each method at various ranks k ∈
{5, 10, 50, 100, 500}, as we fix η = 1.6. Figure 3 presents
the results. Overall, we discern that the strong methods,
PR, NPR, CR, FR, YR, are robust with respect to k. The
effectiveness of the other methods varies greatly with k.

5.4 Popularity Ranking Evaluation
In this section, we investigate the second research question
for popularity. In Section 5.4.1, we investigate the effec-
tiveness of all methods with respect to both flavors of
popularity. Then, in the following sections, we consider only
P-CC, as it is more widely used. Another reason is that
for measuring popularity, one might be more interested in
measuring the direct impact, as captured by citation count,
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Fig. 3: nDCG of each method’s ranking with respect to I-PR,
computed at various ranks k; η = 1.6.

rather than indirect via citation chains. Section 5.4.2 investi-
gates the effect of the future/present ratio, and Section 5.4.3
looks at different ranks.

5.4.1 Overview of Effectiveness

In the first experiment, we fix the future/present ratio to
its default value (η = 1.6) and calculate all evaluation
metrics (ρ, τ , top-50 precision, nDCG@50) quantifying the
effectiveness of all ranking methods against the ground
truth ranking by popularity, either based on citation count
(P-CC) or PageRank (P-PR). Tables 7–10 present the results
per dataset. In general, we observe that, for P-CC, RAM
and ECM perform best for all evaluation metrics, on most
datasets. For P-PR, we find that CR achieves the best overall
correlation, while RAM, ECM, and FR return a better set of
top-50 papers.

Looking into P-CC in more detail, the strength of RAM
and ECM is because they mainly rank papers based on their
recently received citations, which is a good indication of the
citations they will receive in the near-term. An exception
appears in the APS dataset, where CR achieves better corre-
lation than RAM and ECM. This phenomenon is due to the
nature of the dataset, in that the ranking by P-CC is strongly
correlated to that by P-PR (see Table 2), for which, as we
discuss next, CR achieves the highest correlation. Overall,
we note that time-awareness is important for algorithms
to identify popular papers by citations. In contrast to their
effectiveness in the case of citation count-defined influence,
PageRank methods that employ time-aware landing proba-
bilities (particularly, CR and FR) result in good rankings for
citation count-defined popularity.

With respect to P-PR, the best overall correlation is
by CR. This is because the focused researcher behavior
assumed by CR matches the process by which papers are

TABLE 7: hep-th: metrics for P-CC, P-PR; η = 1.6, k = 50.

hep-th P-CC P-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.301 0.217 0.300 0.332 0.243 0.166 0.240 0.353
NPR 0.249 0.179 0.200 0.240 0.227 0.161 0.180 0.410
CR 0.561 0.416 0.500 0.638 0.466 0.323 0.400 0.566
FR 0.548 0.407 0.540 0.659 0.453 0.313 0.480 0.620

ECM 0.578 0.437 0.400 0.776 0.319 0.219 0.360 0.531
RAM 0.601 0.460 0.580 0.855 0.360 0.251 0.440 0.640
NR 0.311 0.223 0.200 0.370 0.339 0.231 0.220 0.494

TABLE 8: APS: metrics for P-CC, P-PR; η = 1.6, k = 50.

APS P-CC P-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.159 0.113 0.160 0.347 0.127 0.085 0.120 0.347
NPR 0.153 0.109 0.220 0.359 0.134 0.090 0.180 0.378
CR 0.570 0.423 0.500 0.627 0.529 0.371 0.420 0.642
FR 0.554 0.412 0.540 0.658 0.518 0.361 0.440 0.653

ECM 0.500 0.377 0.540 0.716 0.399 0.280 0.420 0.672
RAM 0.509 0.385 0.580 0.705 0.412 0.289 0.440 0.667
NR 0.356 0.255 0.160 0.199 0.354 0.240 0.220 0.308

TABLE 9: PMC: metrics for P-CC, P-PR; η = 1.6, k = 50.

PMC P-CC P-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.332 0.260 0.220 0.421 0.198 0.141 0.260 0.444
NPR 0.319 0.250 0.220 0.427 0.200 0.142 0.280 0.484
CR 0.412 0.316 0.360 0.648 0.272 0.189 0.440 0.717
FR 0.357 0.268 0.400 0.658 0.255 0.174 0.520 0.818

ECM 0.435 0.350 0.660 0.896 0.224 0.161 0.540 0.772
RAM 0.434 0.350 0.680 0.902 0.226 0.163 0.560 0.786
NR 0.255 0.193 0.300 0.482 0.245 0.170 0.520 0.767
YR 0.335 0.249 0.220 0.461 0.125 0.084 0.240 0.448

WSDM 0.385 0.291 0.140 0.382 0.041 0.027 0.140 0.317
WC 0.399 0.316 0.500 0.745 0.159 0.113 0.400 0.565

TABLE 10: DBLP: metrics for P-CC, P-PR; η = 1.6, k = 50.

DBLP P-CC P-PR
ρ τ prec nDCG ρ τ prec nDCG

PR 0.347 0.257 0.160 0.384 0.279 0.194 0.200 0.449
NPR 0.336 0.248 0.160 0.382 0.282 0.196 0.220 0.458
CR 0.533 0.397 0.440 0.717 0.496 0.348 0.500 0.765
FR 0.454 0.337 0.480 0.740 0.446 0.311 0.520 0.788

ECM 0.552 0.428 0.700 0.886 0.433 0.310 0.620 0.855
RAM 0.550 0.427 0.680 0.876 0.432 0.310 0.620 0.846
NR 0.262 0.190 0.300 0.561 0.310 0.212 0.420 0.684
YR 0.352 0.256 0.320 0.537 0.287 0.196 0.340 0.595

WSDM 0.314 0.227 0.320 0.442 0.145 0.097 0.300 0.464
WC 0.421 0.315 0.320 0.447 0.282 0.196 0.240 0.431

ranked in the P-PR ground truth. Recall that CR assumes
that researchers prefer to read recent papers, while P-PR
puts emphasis on papers in the near future. Because recent
and near future papers are published nearby in time, their
citation trends tend to be alike and, thus, the two processes
generate similar rankings. We note, however, that the cor-
relations are significantly weaker than those in the case of
PageRank-defined influence. Regarding the top-50 accuracy
of methods, we observe that the citation age-weighted adja-
cency matrix methods, RAM and ECM, perform best, closely
followed by the time-aware landing probability methods FR
and CR. Similar to time-aware landing probabilities, cita-
tion age-weighting biases the simulated researcher towards
reading recent papers.

Overall, we observe that removing the bias in favor
of old papers is critical for assessing the popularity-based
impact of papers. We clearly see that non-time aware meth-
ods (PR, NPR, WSDM) do not perform well. However, we
also observe that not all types of time-awareness help. For
instance, NR overcompensates the bias, as it adjusts both the
adjacency matrix and the landing probabilities, simulating
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Fig. 4: Correlation of each method’s ranking to that of P-CC,
varying η.

thus a researcher that starts at recent papers and prefers
following references to recent papers. On the other hand,
WC chooses to promote papers that were cited quickly
(small citation gap), regardless of whether this happened
recently or not, failing thus to capture current network
dynamics.

5.4.2 Varying the Future/Present Ratio

We next vary the future/present ratio η and measure ef-
fectiveness of all methods against the ground truth ranking
by P-CC. Figure 4 presents Spearman’s ρ for each method
and dataset; Kendall’s τ results are similar and omitted.
The general observation of the previous section applies
here. RAM, ECM, and CR are the strongest methods on all
datasets independently of η.

As η increases, we observe that the effectiveness of the
methods increases at first, but then plateaus and subse-
quently decreases. There are two forces at play here. To
understand the first, recall that methods extrapolate from
the citation trends in the recent history to compile the rank
of papers in the future. It is thus natural to expect that as η
increases, at some point, the accuracy of this extrapolation
will begin to deteriorate. This is why for large η values we
observe plateaus and/or decreases in correlation.

For the second force, note that the distribution of cita-
tions follows a “power law”, or a closely related distribu-
tion [65], [66]. This means that the vast majority of papers
receives few citations, forming the so-called long “tail” of
the distribution, while the top-cited papers comprise its
much shorter “head”. Small η values correspond to a short
time period, meaning that there is less chance for the papers
in the tail to gather enough citations to differentiate among
themselves — any reported differences between them may
be coincidental. Hence, their ranking in the ground truth
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Fig. 5: nDCG@50 of each method’s ranking with respect to
P-CC, varying η.

is based on a small sample of citations that is not rep-
resentative of their relative importance. All methods are
bound to have trouble distinguishing between the papers
in the tail, and since they are significantly more numerous,
we expect low correlations for small η values. Increasing
η alleviates the previous issue and the performance of all
methods improves.

Figure 5 presents the results for nDCG@50, where the
relative ordering among the methods is preserved as η
varies; similar findings hold for top-50 precision. The most
interesting observation is that all methods have trouble
identifying the popular (in terms of citation count) papers
as we look further in the future. The reason is that in
this experiment we focus on top papers that are being
heavily cited, meaning that the aforementioned second force
does not apply here. As a result, the underlying citation
distribution of these top papers is evident even for small η
values and, thus, varying η reveals only the divergence of
their citation trends as tc + T departs from tc.

5.4.3 Varying the Number of Results
In the last experiment, we measure the nDCG of each
method at various ranks k, while we fix the future/present
ratio to 1.6. Figure 6 presents the results. We observe that the
strong methods, RAM and ECM, consistently identify pa-
pers with high popularity-based impact at all tested ranks.
It is worth noting, that while methods cannot correctly
estimate a ranking that is overall similar to that of P-CC,
they do have the ability to push the most highly cited
papers, based on P-CC, to their top ranks.

5.5 Convergence Rate
In this section, we compare the convergence rate of the
iterative methods, based on their parameter settings in the
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Fig. 6: nDCG of each method’s ranking with respect to P-CC,
computed at various ranks k; η = 1.6.

I-PR and P-CC scenarios as presented in Sections 5.3.1
and 5.4.1. In particular, we chose the best parameter settings
in terms of effectiveness based on Spearman’s ρ. Figures 7
and 8 present the convergence error of each method, per
dataset, as a function of running time, for I-PR and P-
CC, respectively. In each scenario, we present the methods
ordered based on their effectiveness, i.e., their achieved
Spearman’s ρ.

In all scenarios ECM is the quickest method to converge.
ECM is based on the Katz centrality (see Section 3.2), which
weights a node on the graph based on all paths that pass
through it [51]. ECM’s quick convergence is due to its
parameter setting, which heavily attenuates the weights of
paths that are longer than direct citations. The convergence
of PR and its variants (NPR, NR, CR,and YR) depends
on the random jump probability α (see Equations 1-2),
with values closer to 1 increasing the number of iterations
required for convergence (and, hence, running time) [16].
We observe that of these methods PR, CR, NR, and YR
converge in comparable time. This is because they all use
similar values of α ∼ 0.5. An exception occurs for YR on
the I-PR scenario, where YR converges much slower. This is
because its best setting on DBLP uses α = 0.85, compared
to α = 0.5 on PMC. An interesting observation is that
while NPR is also a simple PR variant, with a similar α
value, the non-linear nature of its calculations causes it to
converge significantly slower. In particular, NPR requires
about 15−25 more iterations compared to simple PR, hence
its increased running time. Finally, FR converges slightly
slower compared to simple PR. It is noteworthy that this is
not related to the number of iterations required, but due to
its heavier calculations per iteration, since it uses multiple
networks.

To provide a direct comparison of running time trade-

TABLE 11: State-of-the-art method in terms of overall
correlation/top-k ranking.

Influence Popularity
Citation Count RAM/RAM ECM/RAM

PageRank PR/CR CR/RAM

offs between methods on each dataset, we present in Fig-
ures 9 and 10 the running time required to achieve a
convergence error of less than 10−12 in the I-PR and P-CC
scenarios, respectively. When running time is an issue, PR is
the preferred method for I-PR, as it is quite fast (only ECM
is faster) and has the highest effectiveness. For P-CC, ECM
is clearly the preferred method, being both the fastest and
the most effective.

5.6 Discussion

Our evaluation was based on four real datasets and focused
on answering three questions, (1) how distinct are the
notions of influence and popularity, (2) which method is
the state-of-the-art for each impact aspect, and (3) which
(iterative) method runs the fastest. In what follows, we
summarize our findings about these questions, and then
draw some general conclusions about the current state of
research.

Regarding the first question, we observe that popularity
and influence carry rather distinct semantics, but are to
some extent correlated. The correlations are stronger be-
tween the popularity (P-CC and P-PR) and between the
influence flavors (I-CC and I-PR). Moreover, as we look
further into the future (large η values), the similarity be-
tween popularity- and influence-based rankings increases.
This observation raises the issue of appropriately selecting
a suitable time horizon T (or η value) so that the ground
truth actually captures popularity. This horizon should be
on the one hand short to avoid conflation of short- and long-
term impact, and on the other hand long enough to capture
the typical duration of the research cycle in the scientific
discipline. We also note that the two flavors of influence are
strongly correlated for large values of η, suggesting that it
makes sense to focus on and optimize for one of them, e.g.,
I-PR, as past work has done.

Regarding the second question about which method per-
forms best we find no single winner that can identify papers
with high impact both in terms of influence and popularity,
as expected. Instead, in many cases we see that the choice
depends on how impact is defined, but also on what the
objective is, i.e., to derive an overall accurate ranking, or to
identify the few papers with the highest impact. Table 11
summarizes our findings about which method performed
best per setting.

For influence, we draw the following conclusions about
what type of approaches work. In general, time-aware
weighting of the adjacency matrix is a robust mechanism for
identifying influential papers. Time-awareness in landing
probabilities has a bipolar effect, reducing the overall corre-
lation dramatically, but helping identify the top most influ-
ential papers, particularly in the case of PageRank-defined
influence (I-PR), which is the most commonly used ground
truth for influence in the literature. Unmodified PageRank
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Fig. 7: Convergence Rate per method and dataset based on the optimal I-PR parameter setting.

does a good job in capturing the overall correlation with
respect to PageRank-defined influence. Metadata, processes
on multiple networks, and ensembles do not appear to help.
It should also be noted that, naturally, methods based on
one centrality metric (citation count or PageRank) perform
better when influence is measured in terms of the corre-
sponding centrality.

Regarding popularity, our conclusions are the following.
Time awareness is a vital factor for discerning popularity,
as it effectively compensates for the bias in favor of old
papers. Overall in the popularity scenario, we again find
that metadata, processes on multiple networks, and ensem-
bles do not appear to help. We also note that ranking by
popularity appears to be a harder problem than ranking by
influence. The performance of all methods is comparatively
much lower, especially for larger time horizons. For instance
we note that the maximum top-50 precision achieved for
popularity is 0.7, whereas it is 0.9 for influence. This obser-
vation justifies why the majority of past work has focused on
popularity-defined impact. The current performance of the
state-of-the-art, however, leaves open the space for further
improvements in this direction.

Regarding the third research question, among CR and
PR, which are the most effective in the influence scenario,
PR could be the preferable choice in scenarios with stricter
execution time constraints, since it converges faster in all
cases. As regards popularity, where CR and RAM/ECM
are the most effective methods, RAM/ECM could be the
most viable solution, when taking time constraints into
consideration.

6 FUTURE RESEARCH DIRECTIONS

In the following, we discuss how current research could
be expanded in the future, based on suggestions from the
literature, as well as our own insights.
Popularity Based Ranking improvements. Our evaluation
results in Section 5.4 have shown room for improvement
with regards to popularity-based ranking, in contrast to
influence-based ranking that does not appear to be as hard
a problem. Future ranking methods need to address this
shortcoming. Improved ranking by popularity could be
achieved, for example, by further tackling the “cold start”
problem. This problem refers to the fact that new papers
have zero, or low citation counts at the time of ranking,
although they do get cited shortly after their publication. As
we have discussed (see Section 3), some existing ranking
methods address this issue by using age-based weights.
However, these weights are uniformly determined based
on paper, or citation age. As discussed in [25], [46] future
research needs to differentiate between cold-start papers
since not all recent papers attract citations, while those that
do are not all cited at the same rate. Identifying the charac-
teristics which affect citation rate, and which divide papers
into those attracting vs. those not attracting citations, and
exploiting these characteristics to rank papers is an open is-
sue. A promising step in this direction could be the adoption
of network evolution models, proposed by network science
theory [67], which has shown that various real networks
of different domains exhibit particular common behaviours
[68], [69], [70], [71]. Such ideas could help differentiate
between cold start papers, and accordingly modify ranking
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Fig. 8: Convergence Rate per method and dataset based on the optimal parameter setting for P-CC.
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models (e.g., modifying PageRank’s Random Surfer Model),
to achieve improved popularity-based ranking.

Metadata exploitation. Existing work has considered using
author and venue information in their ranking models, as
well as time-related information. As we have shown in
our evaluation, however, such methods do not seem to
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Fig. 10: Running times per method based on the optimal
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gain a significant advantage in ranking based on popularity
or influence. This, of course, does not imply that using
article metadata is meaningless. One direction for better
exploiting article metadata could be via Machine Learning
(ML) techniques. For example, in [31], [45], [46] the authors
propose that future work could combine network analy-
sis with ML techniques, e.g., to learn paper weights that
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can be incorporated into a ranking formula. A particularly
promising approach in this direction would be to exploit
citation count prediction techniques [72], [73], [74]. These
methods use learning techniques over article metadata to
predict future paper citations and, hence, their output could
be a useful component of future paper ranking methods.

Moreover, new types of data that have previously not
been readily available, could be used. An interesting direc-
tion for future work (e.g., as suggested in [9]) would be the
use of Altmetrics [75], [76], [77]. Altmetrics are data derived
from web usage statistics (e.g., paper downloads, views,
etc). These data have not been exploited for impact-based
ranking so far, and could be incorporated in the mechanisms
of paper ranking methods (e.g., as parts of paper, or citation
weights).

Benchmarks and metrics. An open research direction con-
cerns the standardisation of methodologies to evaluate pa-
per ranking methods, i.e., formulating commonly accepted
measures for their evaluation [8], [9], [51]. In our work,
we have presented formal definitions for popularity and
influence, two impact aspects that are often conflated in
current literature, and presented a framework to evaluate
ranking methods based on their ranking capability with
regards to these impact aspects. However, it would also
be interesting to rank scientific papers in terms of other
interesting properties (such as their content’s novelty), apart
from their impact. Methodically examining and ranking
articles based on such properties is, of course, inextricably
linked to formally describing these properties and addi-
tionally devising frameworks to evaluate ranking methods
based on them.

Dataset compilation. A major deficiency of previous work
is the lack of evaluations conducted on multiple datasets.
Most works so far have only performed evaluations on
few, if not only a single dataset. In this work, we have
performed experiments on four datasets of three differ-
ent scientific domains, tackling this deficiency. However,
evaluations should be reproducible on additional datasets
of different sizes. Additionally, the move towards open
science [78] is establishing the reproducibility of scientific
research as a key tenet of the scientific process. To this
end, the distribution of datasets and methods becomes an
important part of the research cycle. Hence, additional,
larger (and interdisciplinary) datasets need to be compiled
and made available to the scientific community as part of
future research.

Addressing malicious behaviour. The world of research
and academia is not flawless: the use of quantitative mea-
sures in the assessment of academics and researchers has
also brought about malpractices by some researchers aiming
to promote their own work. In particular self citation abuse
is a widely recognised problem, which has even led to the
proposal of metrics such as the S-index [79], a self citation
index inspired by the widely used h-index. Another misuse
is that of mutual citations between scientists, based on pre-
vious collaboration, or acquaintance rather than academic
merit. These issues of citation abuse have been brought
up by previous works on paper ranking methods [8], [24].
While some existing works are motivated by the need
to address self-citation malpractices (e.g., [38]), or address

mutual citations (e.g., [41]), open questions still exist. For
example, how robust are paper ranking methods against
these practices, and how can valid self-citations, or mutual
citations (i.e., actually citing relevant work by the same
author, or her collaborators) be differentiated from those
that are made abusively.

7 CONCLUSION

In this paper, we formalized the problem of ranking articles
based on two distinct impact aspects, influence and popu-
larity. We presented a broad overview and categorization of
paper ranking methods proposed in the literature, focusing
on what mechanisms have been proposed. We also summa-
rized the evaluation approaches that have been used. Our
evaluation was based on four real datasets and focused on
answering three research questions: (1) how distinct are the
notions of influence and popularity, (2) which method is the
state-of-the-art for each impact aspect, and (3) how quickly
do iterative methods converge and run.

Our results have shown that for influence PR and CR
yield the best ranking results, while for popularity RAM and
ECM are the winners with regards to ranking. ECM has been
shown to be the quickest method to run in all scenarios. Our
evaluation has shown that, overall, ranking by influence
is adequately addressed by existing methods. In contrast,
we identified a performance gap in the case of ranking
by popularity, which showcases the need to develop novel
ranking methods to close it. As an epilogue, we pinpointed
possible directions for future work in the field of impact-
based ranking of papers.
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