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ABSTRACT

In many domains, it is often required to provide recommendations
for groups, instead of individual users. Existing approaches try to
compensate for the lack of group profiles, by either merging in-
dividual profiles, or treating users separately and then fusing the
recommendations. Both paradigms thus fail to account for the differ-
ent roles and behaviors people assume when making group decisions.
In this work, we propose two novel group recommendation models
that explicitly try to model the behavior of group members and dis-
tinguish it from that when they act alone. A detailed evaluation has
shown that our models consistently provide significantly better rec-
ommendations. In addition, useful conclusions are drawn regarding
the favorable settings of existing techniques.
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1 INTRODUCTION

Recommender systems are nowadays ubiquitous, providing rec-
ommendations in diverse domains, e.g., for movies/tv programs
(Netflix), e-commerce (Amazon), music (Spotify), apps (Apple App
Store and Google Play), books (Goodreads). Usually, the underlying
mechanism for providing recommendations, follows the principles
of collaborative filtering (CF), where the idea is to leverage the ob-
served interests and ratings from other users [22]. More recently,
and following their success at the Netflix prize, latent factor models
have become the standard in materializing the CF idea [10, 11].
While traditional research on recommender systems has almost
exclusively focused on providing recommendations to single users,
there exist many cases, where the system needs to suggest items to
groups of users [1, 4, 16-18, 25]. As examples, consider a group of
friends seeking to go together on a vacation, or a family that decides
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on a movie to watch at home. Existing methods for group recommen-
dations basically follow one of two paradigms. The first, hereafter
termed PROF-AGG, is to explicitly construct a group profile by
combining (aggregating) the profiles of individual members. In this
way, the group can be treated as a pseudo user, and thus standard
techniques can be employed to provide recommendations for the
group. The second paradigm, termed REC-AGG, is to first compute
recommendations for each member separately, and then employ an
aggregation strategy across them to compile the group recommen-
dations. Inspired by social choice theory, numerous aggregation
strategies for profiles and recommendations exist.

These two paradigms share some drawbacks. First, they assume
certain decision dynamics within an group, i.e., the aggregation
strategy, and often fix on this. Second, they treat group members
the same as individual users, mostly assuming that the behavior and
preferences of users in groups is identical to that when they decide
alone. Of course, there are some notable exceptions that avoid these
drawbacks. For instance the hybrid switching strategy of [3] (albeit
between group, general, and individual recommendations) for the
former, INTRIGUE [1] where not all members are treated equally,
[21] that includes personality and social trust, and [7] that considers
relationship strength for the latter. However these works rely on
additional information about group members, which one cannot
assume in a pure CF setting.

For groups that are relatively long-standing, it is reasonable to
expect that sufficient information has been collected in order to build
a group profile, eliminating the need for artificial profile aggregation.
However, we note that in this case the recommender may suffer from
cold-start problems. For instance, the system would not be able to
assess cold items for which no or very few ratings by any group is
available, even though this item may have been rated by individual
users. Similarly, such a system cannot provide recommendations for
cold groups, with no or little group profile, even though members
of the groups may have individual profiles. An approach to counter
these cold-start problems would be to employ PROF-AGG, which
however defeats the purpose at it inherits its shortcomings.

In this work, we propose methods that address the aforementioned
issues. We assume a pure collaborative filtering setting, where only a
history of user-item ratings along with a few group-item ratings are
available. This is a reasonable assumption, as past work has consid-
ered such sparse group profiles [8, 12], and a relevant challenge was
set up [19]. The problem we address is how to best exploit the group
and user profiles for group recommendations. We base our approach
on the understanding that people assume different roles (e.g., leaders
or followers) when in groups, or even across groups (e.g., in work
and in family), and thus may exhibit substantially different behav-
ior compared to them acting individually. Our proposed methods
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attempt to explicitly learn the discrepancies between individual and
group rating behavior.

Our first model, termed RESIDUAL, presupposes that the group
rating differs from the average member rating by a sum of residuals
for each group member. For a particular user and a particular group,
her residual rating captures the difference between her individual
and group ratings averaged over all items in the group profile. As
only very few of these residuals can actually be computed, due to
the sparsity in the group profiles, we employ matrix factorization
to predict the missing residuals. RESIDUAL can thus account for
different rating behavior of users within groups and across groups.
Our second model, termed TRIAD, presupposes that group ratings
are computed as a weighted average of member ratings. Therefore,
the weight of a particular user captures her behavior change as a
group member. TRIAD learns the user behavior weights together
with conventional latent factors by jointly examining user and group
ratings. While both models assume that group ratings are generated
by a linear combination of individual ratings, our evaluation shows
that they perform well even when this may not be the case, e.g., in
least-misery or dictatorship situations.

Evaluating group recommendations is a particularly complex task.
Even when ground truth data is available, a rather rare sighting [5, 12,
24], measuring the satisfaction of user in group decisions remains
an open research topic [15]. To handle the absence of real data,
researchers typically resort to one of two approaches. In the first, the
group rating of an item is synthesized to be the average (or some
other aggregate) of individual ratings. Then, one can use standard
evaluation metrics to quantify how far the predicted group ratings is
from the synthesized. In the second approach, the predicted group
recommendations are evaluated for each group member individually,
and then averaged [2, 3]. As both approaches compute some average
satisfaction, they tend to favor average aggregation strategies as
remarked in [14].

More generally, presuming a particular group satisfaction metric
(e.g., the average member satisfaction) naturally introduces bias. To
combat this, we make a simple but significant contribution towards
an unbiased evaluation of group recommenders under synthetic
datasets. We construct multiple sets of synthetic group ratings as-
suming different group satisfaction criteria, and measure the perfor-
mance of a group recommender at each. Then, a method consistently
outperforming others under multiple criteria constitutes a stronger
and less biased indication of its effectiveness.

We perform a detailed evaluation on real and synthetically gener-
ated group ratings under a broad range of group aggregation strate-
gies. We compare existing methods and identify their favorable
settings. More importantly, we evaluate our two proposed models
and find that they are significantly more accurate than the standard
methods in all settings and under multiple evaluation criteria.

The remainder of this paper is structured as follows. Section 2
defines the problem and establishes the necessary background de-
scribing existing group recommendation methods. Section 3 presents
our two proposed models for group recommendations. Then, Sec-
tion 4 presents a thorough experimental evaluation of existing work
and ours. Finally, Section 5 concludes the paper.
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2 PROBLEM DEFINITION AND
BACKGROUND

In Section 2.1, we first formally define the group recommendation
problem. Then, in Section 2.2 we briefly overview a simple latent
factor model. In Section 2.3, we categorize existing work on group
recommendations.

2.1 Problem Definition

We consider a set of users U = {u;}, a set of items V = {v;}, and a
set of groups G = {g} € 2™ we use the subscripts i, j, k to refer to
an individual user, item, or group, respectively. Further, we assume
we have a set RY of user-item ratings, and a set RY of group-item
ratings. Then, the problem of recommending items to groups can be
abstractly stated as follows.

Problem 1. [Collaborative Filtering Group Recommendation]
Given U, V, G and ratings R(u, RY , predict for each group
g € G the rating of each not previously consumed item.

Throughout this paper, we follow the notational convention that
bold small letters, e.g., x, indicate column vectors, and bold capital
letters, e.g., A, denote matrices.

2.2 Matrix Factorization for Recommendations

A family of very popular techniques for providing item recommenda-
tions is the latent factor models, also known as matrix factorization
[10]. The basic idea is to view the user-item ratings as a sparse ma-
trix, for which we wish to predict the values of its empty cells. This
is achieved by computing a low-rank approximation of the rankings
matrix.

Specifically, we assume that each user u; is associated with an
f-dimensional factor (column) vector u;, and similarly each item
v; with an f-dimensional factor vector v;. Then, the predicted rat-
ing of item v; by user u; is computed as the inner product of the
corresponding factor vectors:

Fij = ulvj. (1

Under this model, the objective is then to compute the factor vec-
tors of each user and item so that they provide accurate estimations
of the known ratings without overfitting. Note that there are many
ways to formulate this goal; here we consider the simplest approach
which minimizes the regularized squared error on the set of ratings
[10]:

>0 = ul v = AIUIE + V1),
(ui,vj)eﬂ(”
where U, V denote the f X |U| user matrix and the f X |V| item
matrix, respectively, consisting of all user and item factor vectors,
A is a parameter controlling the extent of regularization, and ||A||r
denotes the Frobenius norm of matrix A used for regularization.

To minimize the objective function and determine the factor vec-
tors, one can apply standard techniques, e.g., Alternating Least
Squares (ALS), or Stochastic Gradient Descent (SGD).

2.3 Group Recommender Systems

Literature on group recommenders is rich; we refer the reader to
[9, 14] for a systematic treatment of this research area. In this work,
we consider collaborative filtering techniques, focus on the task of
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recommending a single item to the group, and optimize primarily for
the prediction error, i.e., the difference between the predicted and
the actual group rating.

In the absence of group profiles, the recommender system needs
to compensate. There are two basic paradigms in which an exist-
ing recommender for individual users can be extended to provide
group recommendations. In PROF-AGG, also referred to as aggre-
gated model [3] or group model [13], a group profile is created by
aggregating the profiles of group members. In REC-AGG, recom-
mendations for group members are compiled independently, and
are then fused to create group recommendations. Essentially, in the
CF case, both paradigms perform an aggregation of either actual or
predicted ratings.

There are numerous aggregation strategies that one can employ in
either paradigm. These are mostly inspired by social choice theory
ideas; see [13] for an overview, and a study on how people select
recommendations for a group so as to balance the preferences of the
group members. Popular strategies include taking the average, the
minimum a.k.a. least misery principle of not strongly displeasing any
member, the maximum for satisfying the maximum pleasure among
members, the product. For reference we mention the following:
MusicFX [16] implements a least misery criterion in group mod-
eling (PROF-min); POLYLENS [18] aggregates recommendations
assuming least misery (REC-min); INTRIGUE [1] is an interesting
hybrid that identifies sub-groups among groups (e.g., children, or
disabled persons), creates a model for each sub-group (PROF-AGG),
and then fuses the sub-group recommendations under a weighted
scheme (REC-avg); Yu’s TV recommender [25] constructs group
profiles so as to minimize distance among individual profiles (PROF-
AGQG); the content-based TV recommender in [24] investigates the
optimal aggregation strategy for group modeling (PROF-AGG).

A significant line of work concerns the evaluation of group rec-
ommenders. The seminal work of [15] studies what factors influence
group satisfaction and how it differs from individual satisfaction. A
comparison of PROF-AGG strategies can be found at [23]. Various
CF-based rank aggregation techniques (e.g., [6]) for REC-AGG are
examined in [2]. A comparison of both PROF-AGG and REC-AGG
CF-based techniques in [3] concludes that group profile modeling is
better than recommendation aggregation.

Other approaches for group recommendations have also appeared.
Most notably, the information matching approach of [8], denoted
as INF-MATCH, predicts the relevance (instead of the rating) of
items to groups. Each user is assumed to give ratings according to
a 2-Poisson mixture model, where one component describes the
ratings for relevant items (those with rating above some threshold),
and the other those for irrelevant or unrated items. Similarly, each
item receives ratings according to another 2-Poisson mixture model.
INF-MATCH predicts the relevance probability of an item to a user
by taking into account the mixture models of all items and users.
Then, to predict the relevance probability of an item to a group,
INF-MATCH follows the Least Misery strategy, assigning to the
group the minimum relevance probability among its members.

3 OUR GROUP RECOMMENDER MODELS

In this section, we present our contributions to the group recommen-
dation problem. In Section 3.1, we describe RESIDUAL that tries
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to estimate the difference in the behavior of a user in a group and
alone. In Section 3.2, we present TRIAD that learns the strength
with which a user enforces her preferences in a group.

3.1 The Residual Model

The residual model, denoted as RESIDUAL, predicts the rating of
an item v; by group gy as:

Fij = |gL| > iy + Gk, @)

k Uuj €gg

where #;; is the predicted rating (according to some model) of item
v; by user u;, and é':ik is the predicted residual rating of user u;
when in group g.. The intuition, here is that the actual group rating
r; differs from the average user rating by some (unknown, but
estimated) group-specific user residual &;. Note that when f =0
for all users and groups, the RESIDUAL model essentially becomes
the REC-avg technique described in Section 2.3.

In the following, we discuss how we compute the predicted resid-
ual ratings. Consider a user u; being a member of group g, and let
Vi denote the set of items group g has rated. Then, given ratings
RS, and a model for predicting user-item ratings, we define the
residual rating & of user u; in group g as:

1 .
ik = 2, (g —Fu). 3)
k vj €V
Now, consider the sparse |U| X |G| matrix E, which has value
& computed as above when user u; € g, value & = 0 when
u; ¢ gr., and unknown value elsewhere. We factorize the E matrix
into a f¢ x |U| matrix P and a f; X |G| matrix Q, using a technique
similar to that in Section 2.2, to obtain a rank fz approximation.
Then, the predicted residual rating of user u; when in group gy is:
z T
Sik = Pi k-
where p; is the factor vector in matrix P corresponding to user u;,
and q is the factor vector in matrix Q corresponding to group gy..
To better understand the reasoning behind the RESIDUAL model,
consider the following. Assume that we have a complete set of
ratings for group gy, i.e., all items have a group rating and thus
Vi = V. Then, for each member u; of gy, its predicted residual
rating is equal to its residual rating ﬁ Zu,- ey (rj —fij)- Replacing
this value into Equation 2 and expanding we obtain:

N 1 . 1 1 X
= 0 "‘“Wv;vrkj_lgknfw 2, 2, i

Ui€gk Ui€gk v;eV

Then computing the mean of 7y ; over all items v; € V, we derive:

N 1
Ey evifkl = (] Z Tkj»
Vj eV
where E,; v [] denotes expectation over items v; taken uniformly at
random from V. In other words, the mean predicted rating of group
gk 1s equal to the average actual rating that group gy gives to items.

Learning. In our implementation of the RESIDUAL model, we use
matrix factorization as the underlying model for predicting user-item
ratings, which requires matrices U, V as its parameters, as defined
in Section 2.2. In addition, RESIDUAL requires two additional
matrices P, Q factorizing matrix = of residual ratings as described.
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First, we learn parameters U, V from the set RY of user-item
ratings using SGD, similar to [10]; details are omitted. Next, we
compute the set of non-empty entries of matrix E according to
Equation 3. Finally, we learn P, Q using SGD on the aforementioned

set of = entries; details are omitted.

3.2 The Triad Model

The triad model, denoted as TRIAD, predicts the rating of an item
vj by group gy as:

1
Fi= — b; - ij, 4)
S gl Z; g

where 7;; is the predicted rating of item v; by user u;, and b; is
the group behavior of user u;. The intuition here is that each user
has a global (unknown) behavior when she becomes a member of
a group. Similar to RESIDUAL, setting b; = 1 for all users, makes
the TRIAD model identical to the REC-avg technique described in
Section 2.3.

TRIAD uses matrix factorization to predict user-item ratings
(Section 2.2). Therefore, it employs matrices U, V and Equation 1
to predict 7;;. In addition, the TRIAD model uses a third parameter
— hence its name, the |Z|-dimensional group behavior vector b,
containing the group behavior of each user.

To rewrite Equation 4 using matrices, we introduce some addi-
tional notation. For any group gy, let g; denote its |2 |-dimensional
user membership vector, where its i-th coordinate has value @
if user u; is a member of gi, and zero otherwise. Moreover, let
symbol o denote the element-wise (Hadamard) product for vectors:
(xoy)(i] = X(;¥[i]- Then, Equation 4 is equivalent to:

Frj = (grob) U v;. 5)

Observe that the (g ob)” matrix essentially plays the role of the
ﬁ ZuiEgk b; part in Equation 4.

Learning. In what follows we describe how to learn the TRIAD
parameters. Note that contrary to RESIDUAL, all model parameters
are learned together in one phase, using the user-item and the group-
item ratings.

We make the assumption that each observed user rating r;; (resp.
group rating ry ;) follows a Gaussian distribution with mean #;; (resp.

7;) and variance 0.

Therefore, given rankings 7(”, RY , the likelihood of the TRIAD
model is:
pRYURIWUVD) = [| Newsiizo®) [ | NOwjtego®)
(i,j)eRY (k,j)eRY

where N (x; i, 02) is the probability density function of the Gaussian
distribution with mean y and variance 2.
We next assign spherical Gaussian priors [20] on the model pa-

rameters:

pUlag) = [ [ N(i0,68D
uj

p(Vley) = [ [ N(vj:0,081)

vj

pblog) = [ [N(b::05,00)
uj
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We seek to maximize the posterior:
PUV.BIRY, R, 5g) o< p(RY, RE|U, V. b)p(Ulo)p(V]y )p(bloy)

where 0(3 = {0?, alzj, 0%, Oﬁ}, or minimize correspondingly the neg-
ative log posterior, which is equivalent (after eliminating terms de-
pending on crg and constants) to minimizing the following regular-
ized error function:

E= ) (Vij—uiTVj)z+ 2 (’kj‘(gkOb)TUTVf)2+

(i,j)eRYU (k,j)eRY
+ AullUlI% + AvIIVIIZ + Ap b1 (6)

where Ay = alzj/az, Ay = 0\2,/02, Ap = a]f/crz, andb’ =b - 0.5L
To learn the parameters U, V, b of TRIAD from the sets of ratings
RU, RY, we perform SGD as follows. We rewrite Equation 6 as:

E= Z E-R’ll + Z E-RQ s

(i.jerY (k,j)eRY

where:
2
Egu = (riy = ul'v;)” + A IUIE + A4 VI
2
Egg = (rkj - (8k Ob)TUT"j) + AGIIUIIE + AGIIVIIE + AL b1,

and () = Au/(IRUHRY ), 2, = Av/IRUHIRG)), A = 2 /IRY|.

Algorithm 1 presents the learning algorithm for TRIAD. Initially
random values are chosen for the TRIAD parameters (Line 1). Then,
the outer loop (Lines 2—-15) is executed until convergence (or a
maximum number of iterations is reached). In each iteration of
the outer loop, all ratings from RYU and RY are considered in the
inner loop (Lines 3—14). On the other hand, in each iteration of the
inner loop, a single rating is considered. This rating is chosen to
be drawn from a set of ratings with probability proportional to the
set’s size. This is accomplished by flipping a coin with probability
IR(UI/(IR(“I + |RY|) (random variable X sampled at Line 4). Once
the set of ratings to draw from has been established, a rating is
selected uniformly at random (Line 6 or 10). Then, the parameter
values are updated in a gradient descent manner with learning rate n
(Lines 7-9 or 11-13). An important thing to note is that a user rating
rij updates vectors u; and v;, whereas a group rating ry; updates
the user vectors of all g members (hence the matrix U) and vectors
vjandb.

To conclude the description of the learning algorithm, we need
to compute the partial derivatives of Ege and Egg with respect to
TRIAD parameters. Define the prediction error for user rating r;; as
eij =rij— uiTV ;. Then, the non-zero partial derivatives of Equ are
those with respect to all elements of vectors u; and v;:

OEpu
R ’
= —2e;iVj + 2A;u;
[911,‘ LY Ut
O0Egqu
= —2e;ju; + 2A,v;.
avj LY At vYJ

Note that these derivatives are essentially identical to those used
in the SGD for learning the standard matrix factorization model
described in Section 2.2 (after setting /I{J = /1{, =A).

Similarly, define the prediction error for group rating rg; as ex; =
rij — (8k Ob)TUTVj. Then, the non-zero partial derivatives of Egg
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Algorithm 1: TRIAD-Learn
Input: RY, RY, Ay A Ay
Output: U, V, b

Variables: X Bernoulli random variable with probability |[R™ |/(|RY | + |RY|)
1 Initialize U, V, b at random according to their priors

2 repeat
3 repeat
4 x « sample of Bernoulli random variable X
5 if x = 1 then
6 Draw pair (i, j) from RY
OF
7 U U= 1y
OE
8 Vj — Vvj n 3Vj
9 else
10 Draw pair (k, j) from RY
IE,
n U—U-7g 07,35
IE,
RG
12 Vj—Vj—n—7
J J (',)75 v
13 b—b-py a’ﬁg
14 until all ratings from RYU_ RY are drawn

15 until convergence

are those with respect to elements of matrix U and vectors v, b:

aE‘R(H T ’
i —2erjvi(grob)’ + 25U
OE
—x RI — —2erj(grob) UT +22v;
Vj
9Egg T
e —2ep;groU vj + 2\ b.

4 EXPERIMENTAL EVALUATION

In Section 4.1 we detail our experimental setting, describing the
datasets and the evaluation metrics used. Then in Section 4.2 we
present the results of our study.

4.1 Experimental Settings

4.1.1 Real Dataset. To evaluate our methods on a realistic set-
ting, we use the data from the observational study of [5], henceforth
denoted as REAL. Students from four universities were arranged
into groups of 2—4 members. Each member was asked to individually
rate on a 5-point scale the attractiveness of 11 popular European
capitals as a touristic destination. Then, the groups convened and
jointly agreed on their top-2 preferred destinations. Overall, there
were 200 users partitioned across 60 groups.

For our purposes, we convert the ranking of destinations within
each group into group rating scores using logarithmic discounting
(e.g., as in the NDCG metric). Accordingly, the top ranking object
receives the maximum score, while object at rank r receives the
maximum score divided by log(1 + r). As only three ranks exist in
our dataset, the top destination was rated with 5, the second with
3.15, and all the rest with 2.5. The resulting group ratings are split
into training and test sets with a fixed ratio of 4:1.

4.1.2 Synthetic Datasets. We construct synthetic groups and
group ratings based on the popular MovieLens 1M dataset!. It
consists of |U| = 6,040 users, ['V| = 3,952 items (movies), and

"http://grouplens.org/datasets/movielens/
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Table 1: Synthetic Group Ratings Parameters

Parameter Symbol Values Default
group size |9k | 2-8 3
ratings per group [ Vi | 50 -200 100
training ratings to total I(th [/1Vi|  30% —90% 80
relevance threshold P 3 3

IRY| = 1,000, 209 user-item ratings on an integer scale of 1 to 5.
We note that this dataset contains no groups or group-item ratings.

We synthetically construct groups, assigning users to groups uni-
formly at random. In each setting, all groups have the same number
of members, denoted as |gg|; we vary |gx| from 2 up to 8 users. In
all settings, we keep the number of groups fixed to |G| = 50, and the
number of distinct users across all groups to 100.

Each group gives ratings to the same number of items |V |, which
are chosen uniformly at random among all items. In the experiments,
we vary |V| from 50 up to 200. For the evaluation, we split the
ratings into training and test sets, and we vary the ratio |’Vk’ [/|Vi|
of training to total ratings from 30% up to 90%. Table 1 summarizes
the parameters of our construction of group ratings.

The scores of the group ratings are assigned according to different
strategies, resulting in 7 distinct datasets as detailed in the following.

AVERAGE. The rating a group gj gives to an item v; is equal to
the average rating across the group members, i.e.,

1
Tkj = — rij.
T gk uz Y

i €9k

This type captures the setting where all group members jointly and
equally make a decision.

LEAST-MISERY. The rating of group g to item v; is equal to the
minimum rating among the group members, i.e.,

This models the case where the group behaves under a least-misery
principle, so as not to displease any individual member.

DICTATOR. The rating of group gy to item v; is equal to the rating
of one group member, chosen uniformly at random, i.e., ry; = rij,
where i ~ unif[1, |gi|]. This type models the case where decisions
in a group are governed by the desires of a single person, e.g., the
boss of a company, the child in a family.

In the next four types, the rating of group g to item v; is a
weighted average rating across the group members. It is the definition
of the weights that differs.

WEIGHTED-GLOBAL. Each user is assigned a uniformly random
weight, and thus the group gy rating to v; is

1
rkj = Z:l_w Z Wilij,

where w; ~ unif|[0,1]. Note that the weight of a particular user
persists across groups — hence the characterization global. This
type assumes users have a consistent predefined behavior when in
groups, e.g., always willing to compromise.

LEADER-GLOBAL. Each user u; has a global weight either very
small w; = 0.1, or very large w; = 10, where the latter is chosen

with a probability ﬁ, so that in a group there is on average one
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person with strong opinion. This captures the case where users are
either leaders (w; = 10) or followers (w; = 0.1) when in groups.

WEIGHTED-LOCAL. Each group member is assigned a uniformly
random weight, and thus the group rating is

1
ki = WikTij,
! i Wik ,,,Ze;k Y
where w;i ~ unif[0, 1]. The difference with WEIGHTED-GLOBAL
is that users may have different weights across groups, capturing
thus the case where users exhibit group-specific behavior.

LEADER-LOCAL. Each member u; of a group g; has a weight
either very small w;; = 0.1, or very large w;; = 10, where the latter
is chosen with a probability ﬁ. Here, a user may exhibit different
bipolar behavior across groups, e.g., follower among co-workers,
leader among friends.

4.1.3 Methods. We evaluate our proposed group rating pre-
diction models, RESIDUAL and TRIAD, against variants of PROF-
AGG and REC-AGG using average (avg), minimum (min), maxi-
mum (max), and product (prd) aggregation strategies, and the INF-
MATCH method described in Section 2.3.

The PROF-AGG, REC-AGG, and RESIDUAL methods require
a module to predict user-item ratings. In our implementation, we
have used the matrix factorization model described in Section 2.2.
The model parameters (U and V) were learned using SGD, where
the hyperparameters factor dimensionality (f = 10), regularization
parameter (A = 0.005), and learning rate of SGD (1 = 0.005) were
determined by cross validation. Moreover, the factorization of matrix
= in RESIDUAL was also determined by SGD (f = 6, A = 0.001,
n = 0.025). Similarly, parameters U, V, b of TRIAD were determined
by SGD (f = 10, A, = Ay = Ay = 0.001, 5 = 0.005). Finally, the
Poisson-mixture parameters of INF-MATCH were determined by
the Expectation Maximization algorithm as discussed in [8].

4.1.4 Evaluation Metrics. Our proposed methods, similar to
other matrix factorization techniques, are designed to minimize the
prediction error of the group ratings. Hence the two main evaluation
metrics we employ are mean square error variants. Nonetheless, to
obtain a more general picture of performance, we also consider two
ranking metrics. We note that the reported values of these metrics
are the averages across at least 9 different runs, each with different
train/test data splits and random seeds for the SGD.

RMSE. The Root Mean Square Error is computed as:

1
RMSE:J@ Z evl Z (Vk]—rk] s
gk E€EG

(VEU
where (Vke ? is the set of test (evaluation) items for group gi. The
metric captures the overall accuracy of the predicted group ratings;
lower values are better.

M-RMSE. The maximum RMSE within a group is computed as:

€
9k v; ervev

M-RMSE = maervev| Z (rj = Fij)?

and indicates the worst-case accuracy across any group. Compared to
RMSE, this metric better captures the robustness of the recommender
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system, as low values indicate that all groups will receive good
recommendations.

The next two metrics measure the quality of the items’ ranking in-
duced by the predicted ratings. For group g, let Ly = vj,), j,), - - -
denote the list of test items in (V]f ¢ ranked decreasingly be their
predicted group rating 7y i
NDCG@N. The Discounted Cumulative Gain (DCG) at rank N for
group gy is:

S ki
DCGy@N =rgj, + ) ——.
k@ Ty ; log(i + 1)
The Ideal Discounted Cumulative Gain (IDCG) is defined as the
maximum possible DCG, achieved when the items are ranked de-
creasingly by ther actual group rating. The Normalized Discounted
Cumulative Gain at rank N is then computed as the average ratio of
DCG over IDCG across all groups:

1 DCG,@N
NDCG@N = — _—
@N=1g] g;g IDCG,@N
k

NDCG takes values in the range [0, 1], where higher values are
better.

The last metric measures the quality of the ranking with respect
to their relevance. For this reason, we must introduce a relevance
criterion. Specifically, we treat a test set item as relevant when its
actual group rating is greater than a threshold p. For group g, let

Lrel = Ujjyys Ujigys - - . denote the list of relevant test items in "Vev
ranked decreasmgly be their actual group rating ry; il . Note the
distinction between the i-th ranked relevant item vy, according

to its actual rating and the i-th ranked item vj, according to its
predicted rating.

MAP. The Mean Average Precision is

|Lrel

MAP = — Z
G A

where ranky (vj,,) is the rank of item vy, in the list L (which is
sorted according to predicted ratings). MAP takes values in the range
[0, 1], where higher values are better.

i
|Lr€l| Z rankk(vj[l.])’

4.2 Results

4.2.1 Real Dataset. Table 2 presents the metric values for all
methods. In the first two columns where prediction error is measured,
lower values are better. In the last three columns showing ranking
performance, higher values are better. In each column we mark the
best obtained value in bold. Note that INF-MATCH produces only
a ranked list of items and cannot predict ratings; thus we cannot
compute its prediction error.

We should note that predicting the behavior of groups in REAL
is a difficult task, as also observed in [5]. As a general conclusion,
all metric values for all methods are considerably worse than their
counterparts in the synthetically generated datasets. To some extent,
this can be attributed to the fact that this is a small dataset involving
few items that more or less are all equally preferable. Our methods
in particular are hindered by two additional facts, that there are only
few group ratings to learn from, and that users are not shared among
groups.
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cumulative probability of relevant item at rank r
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Figure 1: Chance of relevant item among first r results in REAL

Table 2: Metrics for REAL
RMSE M-RMSE NDCG@3 NDCG@5 MAP

PROF-avg 1.041 1.814 0.785 0.676 0.218
PROF-min 0.919 2.170 0.772 0.682 0.209
PROF-max 1.766 2.518 0.788 0.682 0.218
PROF-prd 1.311 2415 0.779 0.682 0.218
REC-avg 1.007 1.955 0.829 0.791 0.227
REC-min 0.974 1.894 0.829 0.791 0.227
REC-max 1.109 2.609 0.829 0.791 0.227
REC-prd 1.947 3.698 0.844 0.640 0.232
INF-MATCH — — 0.635 0.498 0.178
RESIDUAL 0.822 2.172 0.829 0.791 0.227
TRIAD 0.837 2.137 0.828 0.676 0.241

Nonetheless, it is important to notice that our proposed methods
achieve their goal of minimizing the prediction error of the group
ratings, as they have by far the lowest RMSE values. Looking at the
M-RMSE column, we note however that there is some variance in the
prediction error across groups. In particular, there exist a few groups
for which our method did not have the lowest prediction error. For
these groups, it turns out that averaging their profiles (PROF-avg)
was a better approach.

To assess ranking quality, we set the relevance threshold to 3,
meaning that only the top-2 destinations chosen by the groups are
considered relevant. We observe that our methods have a good per-
formance but not always the best. TRIAD achieves the best MAP,
while RESIDUAL has the second best NDCG at rank 3 and the best
at rank 5. We also note that among the existing methods, aggregating
the predictions (REC-AGG) was a better approach than aggregating
profiles (PROF-AGG) with respect to ranking evaluation metrics.

As there is at most two relevant items in (the test subset of) REAL,
we also investigated how far in the ranked list compiled by each
recommender would we have to go in order to see the first relevant
item. Figure 1 plots the cumulative probability of seeing the first
relevant item at each rank. All methods returned a relevant item in
their first 5 positions, and thus their cumulative probability at rank 5
is 1. With the exception of INF-MATCH, all methods exhibit similar
performance. Note that TRIAD has the highest chance of returning a
relevant item as the first result (60.1%). TRIAD has also the highest
chance (tied with REC-prd) of returning a relevant item among the
top-3 (96.7%), while RESIDUAL has the highest chance (tied with
REC-{avg, min, max}) for returning a relevant item among the top-2
(86.9%) and among the top-4 (98.9%).

4.2.2 Synthetic Datasets. In the first round of experiments,
we investigate the performance of all methods in the standard sce-
nario, i.e., when all synthetic group ratings parameters are set to
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Table 3: Metrics for LEAST-MISERY
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg 1.762 2.803 0.974 0.974 0.889
PROF-min  1.763 2.792 0.973 0.973 0.887
REC-avg 0.469 1.053 0.968 0.970 0.871
REC-min 0.451 1.070 0.970 0.971 0.866
RESIDUAL  0.443 1.081 0.975 0.974 0.888
TRIAD 0.389 1.016 0.972 0.972 0.884

their default values (see Table 1). Tables 3 through 8 summarize
the quality of the group recommendation for six of the synthetic
datasets; AVERAGE is omitted due to lack of space.

We note that we have excluded the prd and max variants of the
PROF-AGG and REC-AGG methods due to their poor performance
(see Table 2 for REAL), especially in the prediction error metrics
(RMSE and M-RMSE). Although their ranking quality was good, it
was never better that the avg and min variants. For similar reasons,
we have also excluded INF-MATCH,; e.g., in one setting its MAP
was at about 0.4, while all others were above 0.9.

Overall, we make the following important observations. First,
in all strategies and under all metrics (except for two cases under
MAP), our models are the best methods, often by far.

Second, regarding prediction error, RESIDUAL and TRIAD are
much more accurate than existing methods, particularly so in the four
weighted average datasets (WEIGHTED and LEADER variants).
This is to be expected, since our methods are explicitly designed to
learn the best way to linearly combine individual ratings. In almost
all other settings, they are the two best methods. Even in their least
favorable datasets (LEAST-MISERY and DICTATOR), where group
ratings are not linear combinations of user ratings, they have a clear
benefit over the second best. Note that TRIAD is always the best
method under the RMSE metrics, and is thus the recommended
approach when prediction error matters.

Third, with respect to the ranking metrics, RESIDUAL and TRIAD
are still the best methods (except these two MAP cases) but by a
smaller margin. This is to be expected, as they are explicitly designed
to optimize for prediction error instead. Note that RESIDUAL in
LEAST-MISERY is the best method under NDCG, and second best
under MAP. Despite the solid performance of our methods, we see
an opportunity in designing group recommenders explicitly targeting
ranking quality.

Fourth, existing approaches cannot take advantage of the group
rating history and have thus relatively poor performance, except in
extreme cases that are tailor-made for them, namely AVERAGE for
REC-avg, and LEAST-MISERY for REC-min. Overall the REC-
AGG variants have significantly lower prediction error in all strate-
gies considered, but among them REC-avg is the winner. This is a
non-surprising observation that corroborates the fact that averaging
works well in most cases [14]. On the other hand, with respect to
ranking quality, the PROF-AGG variants perform marginally better
in some strategies, and in two cases are even the best methods.

In the second round of experiments, we study the sensitivity of all
methods as we vary the synthetic group ratings parameters. Figures 2
through 3 present the results of our study. It is clear that our models
are robust and remain the best under all examined settings. On the
other hand, the performance of existing approaches, and particularly
of the PROF-AGG variants, varies significantly.
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Table 4: Metrics for DICTATOR
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg 1.103 1.964 0.782 0.532 0.941
PROF-min  1.087 2.009 0.782 0.514 0.936
REC-avg 0.499 1.122 0.780 0.531 0.934
REC-min 0.705 1.723 0.779 0.526 0.934
RESIDUAL  0.406 0.739 0.779 0.503 0.932
TRIAD 0.347 0.726 0.789 0.547 0.941

Table 5: Metrics for WEIGHTED-GLOBAL
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg 1.157 2.167 0.976 0.98 0.913
PROF-min 1.152 2.205 0.975 0.979 0911
REC-avg 0.378 0.6 0.975 0.979 0914
REC-min 0.593 1.169 0.976 0.979 0.909
RESIDUAL  0.362 0.564 0.977 0.979 0914
TRIAD 0.319 0.478 0.979 0.982 0.923

Table 6: Metrics for LEADER-GLOBAL
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg 1.249 2.155 0.977 0.984 0.935
PROF-min  1.244 2.167 0.977 0.984 0.942
REC-avg 0.425 0.872 0.975 0.981 0.929
REC-min 0.636 1.373 0.975 0.982 0.931
RESIDUAL  0.381 0.674 0.977 0.984 0.939
TRIAD 0.344 0.633 0.981 0.987 0.94

Table 7: Metrics for WEIGHTED-LOCAL
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg 1.129 2.119 0.974 0.977 0.9

PROF-min  1.122 2.147 0.974 0.977 0.896
REC-avg 0.404 0.714 0.97 0.974 0.897
REC-min 0.591 1.204 0.972 0.976 0.896
RESIDUAL  0.537 1.426 0.973 0.977 0.898
TRIAD 0.341 0.614 0.975 0.978 0.904

Table 8: Metrics for LEADER-LOCAL
RMSE M-RMSE NDCG@5 NDCG@10 MAP

PROF-avg  0.946 1.908 0.973 0.977 0.877
PROF-min  0.941 191 0.972 0.976 0.878
REC-avg 0.416 0.902 0.974 0.978 0.892
REC-min 0.64 1.383 0.973 0.976 0.885
RESIDUAL 0.374 0.549 0.973 0.977 0.888
TRIAD 0.331 0.480 0.977 0.980 0.897

In the last round of experiments, we investigate the performance
under a cold-start scenario. As before, we consider 50 groups pop-
ulated with 100 distinct users. For 10 of these groups, we assign
profiles under the WEIGHTED-GLOBAL scheme that have zero
group ratings (extreme cold) up to 30 ratings (warm). We then ask
the recommender to provide predictions for 100 items for these 10
groups and measure the prediction error; results are shown in Fig-
ure 4. Note that the behavior of REC-avg is the same regardless
of the size of the profiles; small variations are due to randomness.
In the extreme case of empty group profiles, our methods exhibit
significant prediction error. Clearly, REC-avg should be the method
of choice for such situations. However, the important thing to notice
is that as the group profiles increase in size, our methods, TRIAD
particularly, are able to quickly reduce the prediction error. When
only 5 group ratings are available, TRIAD achieves comparable
RMSE to REC-avg, while it reduces the maximum RMSE across
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Figure 2: RMSE vs number of users per group
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Figure 3: RMSE vs number of ratings per group
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Figure 4: Prediction error for cold-start groups

groups (M-RMSE). As the profile size increases, TRIAD further
reduces the variance of RMSE among groups.

5 CONCLUSIONS

This work proposes two group recommenders that explicitly model
the difference in the behavior of users when they are members of
a group and individually. An experimental study with real and syn-
thetic group ratings demonstrates the superiority of our proposed
methodology according to all evaluation metrics studied. In particu-
lar, the TRIAD model, which explicitly learns the behavior of users
in groups, is the best method in the large majority of the experi-
ments. The RESIDUAL model is often the second best method, and
in some settings under ranking evaluation metrics, is even the best.
We also find that aggregating individual recommendations generally
provides better recommendations for the group compared to when
constructing an aggregate group profile.
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