
The VLDB Journal manuscript No.
(will be inserted by the editor)

Hierarchically Compressed Wavelet Synopses

Dimitris Sacharidis · Antonios Deligiannakis · Timos Sellis

the date of receipt and acceptance should be inserted later

Abstract The wavelet decomposition is a proven tool for
constructing concise synopses of large data sets that can be
used to obtain fast approximate answers. Existing research
studies focus on selecting an optimal set of wavelet coeffi-
cients to store so as to minimize some error metric, without
however seeking to reduce the size of the wavelet coeffi-
cients themselves. In many real data sets the existence of
large spikes in the data values results in many large coef-
ficient values lying on paths of a conceptual tree structure
known as the error tree. To exploit this fact, we introduce in
this paper a novel compression scheme for wavelet synop-
ses, termed Hierarchically Compressed Wavelet Synopses,
that fully exploits hierarchical relationships among coeffi-
cients in order to reduce their storage. Our proposed com-
pression scheme allows for a larger number of coefficients
to be stored for a given space constraint thus resulting in in-
creased accuracy of the produced synopsis. We propose op-
timal, approximate and greedy algorithms for constructing
hierarchically compressed wavelet synopses that minimize
the sum squared error while not exceeding a given space
budget. Extensive experimental results on both synthetic and
real-world data sets validate our novel compression scheme
and demonstrate the effectiveness of our algorithms against
existing synopsis construction algorithms.

This work has been funded by the project PENED 2003. The project
is co-financed 75% of public expenditure through EC - European So-
cial Fund, 25% of public expenditure through Ministry of Development
- General Secretariat of Research and Technology and through private
sector, under measure 8.3 of OPERATIONAL PROGRAMME ”COM-
PETITIVENESS” in the 3rd Community Support Programme.

D. Sacharidis · T. Sellis
National Technical University of Athens
E-mail: {dsachar,timos}@dblab.ntua.gr

A. Deligiannakis
University of Athens
E-mail: adeli@di.uoa.gr

Keywords wavelet synopsis · data streams · compression

1 Introduction

Approximate query processing over compact precomputed
data synopses has attracted a lot of attention recently as an
effective means of dealing with massive data sets in interac-
tive decision support and data exploration environments. In
such settings, users typically pose complex queries, which
require considerable amounts of time to produce exact an-
swers, over large parts of the stored data. In exploratory
queries of such nature, users can often tolerate small impre-
cisions in query results, as long as these results are quickly
generated and fairly accurate.

The wavelet decomposition is a mathematical tool for
the hierarchical decomposition of functions with a long his-
tory of successful applications in signal and image process-
ing [17,24,26]. Several studies have demonstrated the ap-
plicability of wavelets as a data reduction tool for a variety
of database problems. Briefly, the key idea is to first apply
the decomposition process over an input data set, thus pro-
ducing a set of wavelet coefficients. We then retain only a
subset, composing the wavelet synopsis, of the coefficients
by performing a thresholding procedure. This thresholding
process depends on the desired minimization metric. The
bulk of past research [26,28,29], both in databases as well as
in image and signal processing applications, has focused on
the minimization of the sum squared error of the produced
approximation. Recent approaches have targeted the mini-
mization of additional error metrics, such as the maximum
absolute/relative error [8,9], or the weighted sum squared
relative error [12,23,27] of the approximation.

Independently of the targeted minimization metric, the
selected coefficients are stored as pairs 〈Coords, Value〉,
where the first element (Coords) is the coordinates/index of

2 Dimitris Sacharidis et al.

the coefficient and determines the data that this coefficient
helps reconstruct (also termed as the support region of the
coefficient), while the second element (Value) denotes the
magnitude/value of the coefficient. Depending on the actual
storage representation for these elements (i.e., integer values
for the coordinates and floating point numbers for the coef-
ficient value) and the data dimensionality, the fraction of the
available storage for the synopsis that is used for storing co-
efficient coordinates can be significant. If sizeof(Coord) and
sizeof(Value) denote the storage requirements for the coef-
ficient coordinates1 and the coefficient value, correspond-
ingly, then the storage of the coefficient coordinates will oc-
cupy a fraction sizeof(Coord)

sizeof(Coord)+sizeof(Value) of the overall synop-
sis size (see Section 2).

While reducing the storage overhead of the wavelet co-
ordinates would allow for a larger number of coefficient val-
ues to be stored, and would thus result in increased accu-
racy of the synopsis, to our knowledge none of the above
techniques tries to exploit this fact and incorporate it in the
coefficient thresholding process. A past suggestion [1] has
proposed constructing a linear approximation method with
respect to the wavelet orthonormal basis [19] by selecting
for storage only the top coefficient values (i.e., the ones with
the largest support regions). Using such an approach, no co-
ordinates need to be stored. However, such an approach does
not give any guarantee on whether the selected coefficients
can significantly reduce the desired error metric. Finally,
techniques that target, possibly multi-dimensional, data sets
with multiple measures [6,15] exploit storage dependencies
among only coefficient values that correspond to the same
coordinates, but for different measures.

To address the drawbacks of existing techniques, in this
paper we propose a novel, flexible, compression scheme,
termed Hierarchically Compressed Wavelet Synopses (de-
noted as HCWS), for storing wavelet coefficients. In a nut-
shell, instead of individually storing wavelet coefficients,
our compression scheme allows for storing sets of coeffi-
cient values. These stored sets are not arbitrary, but are rather
composed by coefficients that lie on a path of a conceptual
tree-like structure, known as the error tree, that captures
the hierarchical relationship amongst wavelet coefficients.
While its formal description is deferred for Section 2, a sam-
ple error tree is depicted in Figure 1. Each path of coefficient
values stored as a hierarchically compressed wavelet coeffi-
cient (HCC) can be uniquely identified by (i) the coordinates
of the path’s lowest, in the error-tree, stored coefficient LC;
and (ii) a bitmap that reveals how many ancestors of LC
are also stored in the same HCC. Utilizing such an index-

1 While for a D-dimensional data set, the D coefficient coordinates
could be stored uncompressed, alternative encodings can be utilized to
limit their size. For example, utilizing a location function for arrays,
the D-dimensional coefficient coordinates can be encoded with space
that depends on the product of the dimension cardinalities.

sharing setting leverages better space allocation, since the
coordinates of a single coefficient need to be stored in each
path, which can result to increased accuracy of the obtained
approximation.

A question that naturally arises is whether “important”,
for the desired error metric, coefficient values can frequently
occur within such a path and would, thus, be beneficial to
store using a HCC. As we explain in Section 2, due to the
nature of the wavelet decomposition process, this behavior
is expected to be frequently observed, and only, in data sets
with frequent spikes and discontinuities in neighboring do-
main regions. These discontinuities are often due to large
spikes in the collected data values, such as the ones observed
in network monitoring applications where the number of
network packets may often exhibit a bursting behavior. A
similar behavior also occurs in sparse regions over large do-
main sizes, where either few non-zero data values may occur
in an otherwise empty region, or where dense regions neigh-
bor empty regions of the data.

One could argue that wavelets are ill-suited for such data
sets, and that other competitive approximation techniques,
such as compressed histograms [25], might be in some cases
more appropriate. Our proposed techniques seek to improve
the accuracy of the obtained data synopsis in such data sets,
without requiring any a-priori knowledge on the overall data
distribution, or on the existence, and frequency, of spikes
and discontinuities in the collected data. When such spikes
and discontinuities occur frequently, our techniques man-
age to improve the storage utilization of wavelet coefficients
and, thus, the quality of the obtained approximation. More-
over, our techniques can be adapted to multi-dimensional
data sets, where prior studies [2,29] have demonstrated that
the wavelet transform can lead to more accurate data repre-
sentations than competitive techniques, such as Histograms.

To briefly illustrate the benefits of our approach, con-
sider the sample error tree depicted in Figure 1. In this fig-
ure, the values of 16 coefficients are depicted, using the sym-
bol ci to denote the coefficient at coordinate i. Without for-
mally introducing the internals of the conventional thresh-
olding process, assuming a space budget of 41 bytes, and
using 8 bytes for storing the〈Coord,Value〉 pairs, the op-
timal conventional wavelet synopsis would simply store the
coefficients c0, c1, c7, c8 and c15 shown in gray. On the other
hand, our hierarchically compressed wavelet synopsis, given
the same space budget, would store the two paths shown in
Figure 1 — that is, it would manage to also store coefficients
c2,c3,c5 and c11 in comparison to the coefficient c8 selected
by the conventional wavelet synopsis. The effect of includ-
ing these coefficients is the reduction of the sum squared er-
ror (SSE) of the approximation by 60% (SSE of 294 instead
of 752).

While the notion of HCWS can be used as a storage tech-
nique by optimization algorithms and incorporated in their

Hierarchically Compressed Wavelet Synopses 3

operation for any of the proposed error metrics, in this pa-
per we simply focus on minimizing the commonly used sum
squared (absolute or relative) error metrics. The contribu-
tions of our work can be summarized as:

1. We introduce the concept of HCWS, a novel compres-
sion scheme that fully exploits the hierarchical relation-
ships among wavelet coefficients, and that may lead to
significant accuracy gains.

2. We propose a novel, optimal dynamic programming algo-
rithm, HCDynL2, for selecting the HCWS that minimizes
the sum of squared errors under a given synopsis size
budget. We then propose a streaming variant of the op-
timal algorithm that can operate in one pass over the data
using limited memory.

3. We present an approximation algorithm, HCApprL2, with
tunable guarantees, for the benefit of the obtained so-
lution, for the same optimization problem. Further, we
present a streaming variant of the algorithm.

4. Due to the large running time and space requirements of
our DP solution, we introduce a fast greedy, HCGreedyL2,
algorithm with space and time requirements on par with
conventional synopsis techniques. We then also present
a streaming variant, the HCGreedyL2-Str algorithm, of the
greedy algorithm.

5. We sketch useful extensions for multi-dimensional data
sets and running time improvements for large domain
sizes.

6. We present extensive experimental results of our algo-
rithms on both synthetic and real-life data sets. Our ex-
perimental study demonstrates that (i) the use of HCWS
can lead to wavelet synopses with significantly reduced
errors; (ii) HCApprL2 constructs HCWS with tunable ac-
curacy guarantees; (iii) although HCGreedyL2 cannot pro-
vide guarantees in the quality of the obtained synopsis, it
always provides near-optimal solutions, while exhibiting
very fast running times; and (iv) The HCGreedyL2-Str algo-
rithm consistently provides results comparable to those
of the HCGreedyL2 algorithm.

Outline. The remainder of this paper is organized as fol-
lows. Section 2 builds the necessary background on wave-
let decomposition, introduces the concept of Hierarchically
Compressed Wavelet Synopses and formally presents our
optimization problem. In Section 3 we formulate a dynamic
programming recurrence and use it to optimally solve this
optimization problem. Next, in Section 4 we present an ap-
proximation algorithm with tunable guarantees, whereas, in
Section 5 we present a faster greedy algorithm. In Section 6
we provide a streaming version of our greedy algorithm. In
Section 7 we sketch some useful extensions of our algo-
rithms and in Section 8 we describe the results of our em-

pirical study. Section 9 presents related work and, finally,
Section 10 provides some concluding remarks and future di-
rections.

2 Preliminaries

In this section, we provide a quick introduction to the sim-
plest of wavelet decompositions, the Haar wavelet decompo-
sition. We also discuss the existing strategies for coefficient
thresholding and demonstrate some of their important short-
comings. Finally, we introduce the notion of hierarchically
compressed wavelet coefficients and synopses, which form
the basis for our proposed approach and data-reduction al-
gorithms.

2.1 One-Dimensional Haar Wavelets

Wavelets are a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient and
theoretically sound. Broadly speaking, the wavelet decom-
position of a function consists of a coarse overall approxi-
mation along with detail coefficients that influence the func-
tion at various scales [26]. Suppose we are given the one-
dimensional data vector A containing the N = 16 data val-
ues A = [17, 41, 32, 30, 36, 36, 35, 57, 0, 0, 0, 0, 0, 0, 0,

36]. The Haar wavelet transform of A can be computed as
follows. We first average the values together pairwise to get
a new “lower-resolution” representation of the data with the
following average values [29, 31, 36, 46, 0, 0, 0, 18]. In
other words, the average of the first two values (that is, 17
and 41) is 29, that of the next two values (that is, 32 and 30)
is 31, and so on. Obviously, some information has been lost
in this averaging process. To be able to restore the original
values of the data array, we store some detail coefficients that
capture the missing information. In Haar wavelets, these de-
tail coefficients are simply the differences of the (second of
the) averaged values from the computed pairwise average.
Thus, in our simple example, for the first pair of averaged
values, the detail coefficient is −12 since 29− 41 = −12,
for the second we again need to store 1 since 31− 30 = 1.
Recursively applying the above pairwise averaging and dif-
ferencing process on the lower-resolution array containing
the averages, we get the following full decomposition: The

Resolution Averages Detail Coefficients

4 [17, 41, 32, 30, 36, 36, 35, 57,
0, 0, 0, 0, 0, 0, 0, 36] —

3 [29, 31, 36, 46, 0, 0, 0, 18] [-12, 1, 0, -11, 0, 0, 0, -18]
2 [30, 41, 0, 9] [-1, -5, 0, -9]
1 [35.5, 4.5] [-5.5, -4.5]
0 [20] [15.5]

wavelet transform (also known as the wavelet decomposi-
tion) of A consists of the single coefficient representing the

4 Dimitris Sacharidis et al.

Symbol Description (i ∈ {0, . . . ,N−1})
N Number of data-array cells
D Data-array dimensionality
B Space budget for synopsis
A, WA Input data and wavelet transform arrays
di Data value for ith cell of data array
d̂i Reconstructed data value for ith cell
ci,c∗i Un-normalized/normalized Haar coefficient coordinate i
path(u) Set of non-zero proper ancestors of u in the error tree
level(ci) The level of the error tree ci belongs to
HCC A hierarchically compressed wavelet coefficient
bottom(HCC) The bottommost coefficient that belongs to HCC
top(HCC) The topmost coefficient that belongs to HCC
parent(HCC) The parent of the topmost coefficient that belongs to HCC

Table 1 Notation.

overall average of the data values, followed by the detail
coefficients in the order of increasing resolution. Thus, the
one-dimensional Haar wavelet transform of A is given by
WA = [20, 15.5,−5.5,−4.5,−1,−5, 0,−9,−12, 1, 0,−11,

0, 0, 0, −18]. Each entry in WA is called a wavelet coeffi-
cient. The main advantage of using WA instead of the origi-
nal data vector A is that for vectors containing similar values
most of the detail coefficients tend to have very small values.
Thus, eliminating such small coefficients from the wavelet
transform (i.e., treating them as zeros) introduces only small
errors when reconstructing the original data, resulting in a
very effective form of lossy data compression [26].

The Haar Coefficient Error Tree. A helpful tool for ex-
ploring and understanding the key properties of the Haar
wavelet decomposition is the error tree structure [21]. The
error tree is a hierarchical structure built based on the wave-
let transform process (even though it is primarily used as a
conceptual tool, an error tree can be easily constructed in
linear O(N) time). Figure 1 depicts the error tree for our ex-
ample data vector A. Each internal node ci (i = 0, . . . ,15)
is associated with a wavelet coefficient value, and each leaf
di (i = 0, . . . ,15) is associated with a value in the original
data array; in both cases, the index/coordinate i denotes the
positions in the data array or error tree. For example, c0
corresponds to the overall average of A. Note that average
coefficients are shown with square nodes (data values can
be considered as averages at level logN), whereas details
are shown with circular nodes. The resolution levels l for
the coefficients (corresponding to levels in the tree) are also
depicted. (We use the terms “node” and “coefficient” inter-
changeably in what follows.) Table 1 summarizes some of
the key notational conventions used in this paper; additional
notation is introduced when necessary. Detailed symbol def-
initions are provided at the appropriate locations in the text.
Given a node u in an error tree T , let path(u) denote the set
of all proper ancestors of u in T (i.e., the nodes on the path
from u to the root of T , including the root but not u) with
non-zero coefficients. A key property of the Haar wavelet
decomposition is that the reconstruction of any data value di

depends only on the values of coefficients on path(di); more
specifically, we have di = ∑c j∈path(di) δi j · c j, where δi j =+1
if di is in the left child subtree of c j or j = 0, and δi j =−1
otherwise. Reconstructing any data value involves summing
at most logN+1 coefficients. For example, in Figure 1, d5 =
c0 + c1− c2 + c5 = 20+ 15.5− (−5.5)+ (−5) = 36. Note
that, intuitively, wavelet coefficients carry different weights
with respect to their importance in rebuilding the original
data values. For example, the overall average and its cor-
responding detail coefficient are obviously more important
than any other coefficient since they affect the reconstruc-
tion of all entries in the data array. In order to weigh the
importance of all wavelet coefficients, we need to appropri-
ately normalize the final entries of WA. A common normal-
ization scheme [26] is to multiply each wavelet coefficient ci
by
√

2logN−level(ci), where level(ci) denotes the level of reso-
lution at which the coefficient appears (with 0 corresponding
to the “coarsest” resolution level and logN to the “finest”).
Given this normalization procedure, the normalized values
of the wavelet coefficients of our example data array A are:
[80, 62, −11

√
2, −9

√
2, −2, −10, 0, −18, −12

√
2,
√

2, 0,

−11
√

2, 0, 0, 0, −18
√

2].

2.2 Conventional Wavelet Synopses

Given a limited amount of storage for building a wavelet
synopsis of the input data array A, a thresholding proce-
dure retains a certain number BC � N of the coefficients in
WA as a highly-compressed approximate representation of
the original data (the remaining coefficients are implicitly
set to 0). The goal of coefficient thresholding is to deter-
mine the “best” subset of BC coefficients to retain, so that
some overall error measure in the approximation is mini-
mized. The method of choice for the vast majority of stud-
ies on wavelet-based data reduction and approximation [2,
21,22] is conventional coefficient thresholding that greed-
ily retains the BC largest Haar-wavelet coefficients in abso-
lute normalized value. This thresholding method provably
minimizes the sum squared error (SSE). Indeed, in a math-
ematical view point, the process of computing the wavelet
transform and normalizing the coefficients is actually the or-
thonormal transformation of the data vector with respect to
the Haar basis. Parseval’s formula guarantees that choosing
the BC largest coefficients is optimal with respect to the SSE.
Consider our example array A and assume that we have a
space budget of 41 bytes. In conventional synopses we re-
quire to store each coefficient as a 〈i,ci〉 pair, where i de-
notes the index/coordinate of the coefficient and ci denotes
its value. Thus, our budget translates to 5 coefficients, if we
further assume that a coordinate and a coefficient value cost
4 bytes each. Optimizing for the sum of squared errors, leads
to choosing the 5 largest (in absolute normalized value) co-
efficients. These retained coefficients c0, c1, c7, c8 and c15

Hierarchically Compressed Wavelet Synopses 5

-1 -5

17 41 32 30 36 36 35 57

-12 1 0 -11

-5.5

d0 d1 d2 d3 d4 d5 d6 d7

c8 c9 c10 c11

c4 c5

c2

c0

+

-

+

0 -9

0 0 0 0 0 0 0 36

0 0 0 -18

-4.5

d8 d9 d10 d11 d12 d13 d14 d15

c12 c13 c14 c15

c6 c7

c3

+

+

-

+
15.5

20

c1

-

l = 4

l = 3

l = 2

l = 1

l = 0

Fig. 1 Error-tree structure for example data vector A.

Coordinate Bitmap Set of Coefficient Values
11 11110 {−11,−5,−5.5, 15.5, 20}
15 110 {−18,−9,−4.5}

Table 2 HCWS for data vector A and B = 41 bytes.

are shown in gray in Figure 1. Note that in D-dimensional
data sets the stored coefficients consist of the D dimension
coordinates (which, as mentioned in Section 1, can be stored
in less space than explicitly storing them as D integer values)
and of the coefficients value.

As discussed in Section 1, the main drawback of con-
ventional wavelet synopses for minimizing the SSE of the
approximation is that not only is there no effort to reduce
the storage overhead of the selected coefficients but, more
importantly, that this objective is not incorporated in the op-
eration of the algorithm. The same drawback also occurs
in thresholding algorithms that try to minimize other error
metrics, such as the maximum or weighted sum squared
absolute/relative error of the approximation [8,9,12,23,27].
Due to the differencing process employed by the wavelet de-
composition between average values of neighboring regions,
multiple large coefficient values may exhibit hierarchical re-
lationships (i.e., belong in the same path) only when spikes
over some regions of the data are large enough2 to signif-
icantly impact the values of coefficients (and, thus, gener-
ate coefficients with large values) in multiple (and poten-
tially all) resolution levels. Data sets which include multiple
spikes with the aforementioned property (i.e., can generate
multiple large coefficients in their path), present great op-
portunity for exploiting the hierarchical relationships among
important coefficient values and also provide better oppor-
tunities for our presented techniques to be most effective.

2 Besides its magnitude, the impact of a spike may also depend, in
the case of the Lw

2 error metric discussed in Section 7.3, on the weight
specified for each data point.

2.3 Hierarchically Compressed Synopses

Given the shortcomings of the existing wavelet thresholding
algorithms we now introduce the notion of a hierarchically
compressed wavelet coefficient (HCC). For ease of presen-
tation, we initially focus on the one-dimensional case. The
extensions to multi-dimensional data sets are presented in
Section 7.

Definition 1 A hierarchically compressed (HCC) wavelet
coefficient is a triplet 〈BIT,C,V 〉 consisting of:

• A bitmap BIT of size |BIT| ≥ 1, denoting the storage of
exactly |BIT| coefficient values.

• The coordinate/index C of the bottommost stored coeffi-
cient.

• The set V of |BIT| stored coefficient values.

�

The bitmap of a HCC can help determine how many co-
efficient values have actually been stored. By representing
the number of stored coefficients in unary format, as a series
of (|V | − 1) 1-bits and utilizing a 0-bit as the last bit (also
acting as a stop bit), any hierarchically compressed wave-
let coefficient that stores |V | coefficient values requires a
bitmap of just |V | bits. A hierarchically compressed wavelet
synopsis (HCWS) consists of a set of HCCs, in analogy to a
conventional synopsis that comprises 〈Coords,Value〉 pairs.

Returning to our example array A, for a space budget of
41 bytes, or 328 bits, optimizing for the SSE metric results
in storing two hierarchically compressed coefficients. These
HCCs are essentially the two paths illustrated in Figure 1
and are depicted in Table 2. Assuming, as before, that a co-
ordinate and a coefficient value each require 32 bits, the first
hierarchical coefficient requires 32 + 5 + 5 · 32 = 197 bits,
whereas the second one requires 32+3+3 ·32 = 131 bits.

It is easy to see how a hierarchically compressed synop-
sis better utilizes the available space, and in doing so man-
ages to store 3 more coefficients than the conventional syn-
opsis retains. In terms of SSE, the conventional synopsis

6 Dimitris Sacharidis et al.

loses 752, whereas the HCWS just 294 — an improvement
of over 60%. It is important though to emphasize that the
coefficient values stored in HCWS are not necessarily a su-
perset of the coefficients selected by the conventional thresh-
olding algorithm, since it is often more beneficial to exploit
storage dependencies and store multiple coefficient values
that lie on a common path, than storing a slightly larger in-
dividual value, as shown in Section 8. In our example, note
that the c8 coefficient, selected by a conventional synopsis,
is not included in the optimal HCWS.

2.4 Problem Definition

The selection of which hierarchically compressed wavelet
coefficients to store is based on the optimization problem we
are trying to solve. To simplify notation, in our discussion
hereafter the unit of space is set equal to 1 bit, and all space
requirements are expressed in terms of this unit. The bulk of
the work in wavelet-based compression of data tries to mini-
mize the sum of squared absolute errors (SSE) of the overall
approximation. We focus on the same problem, here; exten-
sions to the sum of squared relative errors, or any weighted
Lw

2 norm, can be found in Section 7. More formally, the op-
timization problem can be posed as follows:

Problem 1 [Sum of Squared Errors Minimiza-
tion for Hierarchically Compressed Coefficients]
Given a collection WA of wavelet coefficients and
a storage constraint B select a synopsis S of hi-
erarchically compressed wavelet coefficients HCC’s
that minimizes the sum of squared errors; that is,
minimize ∑

N−1
i=0 (di− d̂i)2 subject to the constraint

∑HCC∈S |HCC| ≤ B, where |HCC| denotes the space
requirement for storing HCC. �

Based on Parseval’s theorem and the discussion in Sec-
tion 2.2, using c∗i to denote the normalized value for the ith

wavelet coefficient, we can restate the above optimization
problem in the following equivalent (but easier to process)
form.

Problem 2 [Benefit Maximization for Hierarchi-
cally Compressed Coefficients] Given a collection
WA of wavelet coefficients and a storage constraint B,
select a synopsis S of hierarchically compressed wave-
let coefficients that maximizes the sum ∑

N−1
i=0 (c∗i)

2

of the squared retained normalized coefficient val-
ues, subject to the constraint ∑HCC∈S |HCC| ≤ B,
where |HCC| denotes the space requirement for stor-
ing HCC. �

Symbol Description
S1 sizeof(Coords)+ sizeof(Value)+1
S2 sizeof(Value)+1
M[i,B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient ci
F[i,B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient
ci and when ci is forced to be stored.

Table 3 Notation used in HCDynL2 Algorithm.

3 HCDynL2: An Optimal Dynamic-Programming
Algorithm

We now propose a thresholding algorithm (termed HCDynL2)
based on Dynamic-Programming (DP) ideas, that optimally
solves the optimization problem described above. Our HC-

DynL2 algorithm takes as input a set of input coefficient val-
ues WA and a space constraint B. HCDynL2 then selects an op-
timal set of hierarchically compressed coefficients for Prob-
lem 2. Before explaining the operation of our HCDynL2 algo-
rithm, we need to introduce the notion of overlapping paths.

Definition 2 Two paths are overlapping if they both store
the value of at least one common coefficient.

It is important to note that the benefit of storing two over-
lapping paths is not equal to the sum of benefits of these two
paths, since the storage of at least one coefficient value is
duplicated. Thus, the benefit of each path depends on which
other overlapping paths are included in the optimal solu-
tion. The possibly varying benefit of each candidate path is
the main difficulty in formulating an optimal algorithm. To
make matters worse, the number of candidate paths that may
be part of the solution is quite large (O(N logN)), as is the
number of overlapping paths. In particular, any coefficient
value ci belonging at level level(ci) may be stored in up to

∑
0≤ k ≤min{ j, level(ci)}
level(ci)− k + j ≤ logN

2k paths of length 1 ≤ j ≤ logN + 1 (i.e., paths

originating from nodes in its subtree with distance at most j
from ci). Fortunately, the following lemma helps reduce the
search space of our algorithm, by considering the structure
of the error tree.

Lemma 1 The optimal solution for Problem 2 (and equiv-
alently for Problem 1) never needs to consider overlapping
paths.

The proof of Lemma 1 is simple and is based on the
observation that for any solution that includes a pair of over-
lapping paths (the extension to having multiple overlapping
paths is straightforward), there exists an alternative solution
with non-overlapping paths that stores exactly the same co-
efficient values and, thus, has the same benefit while requir-
ing less space. This solution is produced by simply remov-
ing from one of the overlapping paths its intersection with

Hierarchically Compressed Wavelet Synopses 7

F[i,B] =

−∞
, if i≥ N
or B < S1

max

max

0≤bL≤B−S1
(c∗i)2+M[2i,bL]+M[2i+1,B−bL−S1]

max
0≤bL≤B−S2

(c∗i)2+F[2i,bL]+M[2i+1,B−bL−S2]

max
0≤bL≤B−S2

(c∗i)2+M[2i,bL]+F[2i+1,B−bL−S2]

 , otherwise
M[i,B] =

0

, if i≥ N
or B < S1

max

 max
0≤bL≤B

M[2i,bL]+M[2i+1,B−bL]

F[i,B]

 , otherwise
(1)

the other path. Let the storage overhead cost of the coef-
ficient coordinate be assigned to the lowest coefficient of
each path. Thus, the required space for this coefficient (i.e.,
the “start-up” cost for any HCC) is S1 = sizeof(Coord)+
sizeof(Value)+1 and the corresponding space for all other
coefficient values in its path is simply: S2=sizeof(Value)+1.
Then, when considering the optimal solution at any node
i ≥ 1 (The extension to node 0 that has just one subtree is
straightforward) of the error tree, given any space constraint
B, the following cases may arise:

1. Coefficient ci is not part of the optimal solution. The op-
timal solution arises from the best allotment of the space
B to the two subtrees of ci.

2. Coefficient ci is part of the optimal solution but is not
a part of any hierarchically compressed path originating
from any of its descendants in the error tree. The opti-
mal solution arises from storing ci in a new hierarchi-
cally compressed path and considering the best allotment
of the space B−S1 to the two subtrees of ci.

3. Coefficient ci is part of the optimal solution and is part of
a single hierarchically compressed path originating from
one of its descendants that may reside in its left (right)
subtree. The optimal solution arises from attaching ci to
the hierarchically compressed path of the left (right) sub-
tree and considering the best allotment of the space B−S2
to the two subtrees of ci. However, for this space distribu-
tion process to be valid, we need to make sure that the so-
lution that is produced by allocating space 0≤ b≤ B−S2
to the left (right) subtree stores the coefficient c2i (c2i+1)
— otherwise, ci cannot be attached to a path originating
from that subtree.

Cases 1 and 2 are pretty straightforward, since they in-
troduce a recursive procedure that can be used to calculate
the optimal solution at node i. This recursive procedure will
check all possible allocations of space to the two subtrees of
i and calculate the optimal solutions in these subtrees, given
the space allocated to them. The optimal solution arises from
the space allocation that results in the largest benefit. Note
that in these two cases there are no dependencies or require-
ments from the solutions sought in the two subtrees, other
that they result in the largest possible benefit, given the space
allocated to them (and thus seeking the optimal solutions in
these subtrees suffices).

On the contrary, in Case 3 coefficient ci, for any space
allocation to its two subtrees, needs to be attached to a so-
lution that is produced at one of its subtree and where this
solution stores the coefficient value at the root of the sub-
tree. Given this requirement, the solution for this subtree is
not necessarily the optimal one, but only the optimal solu-
tion, given that the root of the subtree is stored. This implies
that our algorithm will need to also keep track of some sub-
optimal solutions, similarly to the dynamic programming al-
gorithm in [6], which seeks to exploit storage dependencies
in data sets with multiple measures only among coefficient
values of different measures that share the same coefficient
coordinates (and, thus, cannot be used for the problem ad-
dressed in this paper). On the other hand, the goal of our
algorithm is to explore hierarchical relationships among co-
efficient values of different coordinates in order to reduce
their storage overhead and improve their storage utilization
in single-measure data sets. This requires properly utilizing
the error-tree structure to identify these storage dependen-
cies and processing the nodes in the error tree using an ap-
propriate ordering. Neither of these restrictions was present
in [6].

3.1 Our Solution

We now formulate a dynamic programming (DP) solution
for the optimization problem of Section 2.4; the notation
used is shown in Table 3. Let M[i,B] denote the maximum
benefit acquired when assigning at most space B to the sub-
tree of coefficient ci. Also, let F[i,B] denote the optimal ben-
efit acquired when assigning at most space B to the subtree
of coefficient ci and when ci is forced to be stored. Equa-
tion 1 depicts the recurrences employed by our HCDynL2 al-
gorithm in order to calculate these values. Case 2, discussed
above, corresponds to the first clause of the max calculation
for F[i,B], while Case 3 is covered by the next two clauses
of the same max calculation. Of course, when the remaining
space is less than S1 or i ≥ N, it is infeasible 3 to store the
coefficient value ci, thus returning a benefit of −∞. For the
calculation of the M[i,B] value, Case 1 is covered in the first
clause of the max quantity, while Cases 2 and 3 are covered

3 Even though ci can be stored for S2 ≤ B < S1, there will be insuf-
ficient space (< S1) to allocate to the lowest node of the path that ci is
attached to.

8 Dimitris Sacharidis et al.

in the second clause (F[i,B]). Of course, if the remaining
space is less than S1 or i ≥ N, no coefficient value can be
stored, thus returning a benefit of 0 for M[i,B].

Given Equation 1, our HCDynL2 algorithm starts at the
root of the error tree and seeks to calculate the value of
M[0,B]. In this process, various M[] and F[] values are cal-
culated. For each of these calculations we also record which
clause of the formulas helped determine these values, and
the corresponding allotments bL to the left subtree of the
nodes (see Equation 1). This step helps to quickly trace the
steps of the algorithm when reconstructing the optimal solu-
tion.

After the value M[0,B] has been calculated, we can re-
construct the optimal solution as follows. We start from the
root node with a space constraint B. Based on which clause
determined the value of M[i,B], we recurse to the two sub-
trees with the appropriate space allocation (recall that this
information was recorded in the calculation of the M[] and
F[] values) and a list of hanging coefficient values. These
coefficient values belong to the hierarchically compressed
path that passes through ci. This path needs to be included
in the recursion process because it can only be stored when
all of its the coefficient values have been identified. Based
on Cases 1-3 described above, at each node we may ei-
ther: (i) Not store ci; then store the input hanging path if
it is non-empty; (ii) Attach ci to the received hanging path
(Case 2) and store the resulting hierarchically compressed
coefficient; or (iii) Attach ci to the received hanging path
(Case 3) and recurse to the two subtrees. In this recursion,
the resulting hanging path needs to be input to the appro-
priate subtree, while the other subtree will receive an empty
hanging path.

Theorem 1 The HCDynL2 algorithm computes the optimal
M[i,B] and F[i,B] values at each node of the error tree and
for any space constraint B correctly.

Proof We will prove Theorem 1 by induction on the height
of each coefficient from the bottom of the error tree (i.e., leaf
nodes correspond to height 1).

Base Case: Leaf nodes (height = 1). If coefficient ci be-
longs at the leaf level, then the possible set of paths in the
subtree of ci degenerates to simply storing ci. Thus, the opti-
mal benefit of a solution M[i,B] is equal to (c∗i)

2 for B≥ S1
and 0, otherwise. Similarly, for B ≥ S1, F[i,B] = M[i,B] =
(c∗i)

2. Otherwise, ci cannot be stored because of space con-
straints (thus the benefit is set −∞ to represent this). No-
tice that in all cases the formulas for calculating M[i,B] and
F[i,B] correctly compute the optimal solution and its benefit
for any leaf node ci and for any space constraint B assigned
to the subtree of the node.

Inductive Step. Assume that the HCDynL2 algorithm cor-
rectly computes the optimal M[i,B] and F[i,B] values at each

node of the error tree up to height j and for any space con-
straint B. We will show that the HCDynL2 algorithm also cor-
rectly computes the optimal M[i,B] (the proof for F[i,B] is
similar) values at each node at height j +1.

Note that the HCDynL2 algorithm considers all combina-
tions of storing (or not) the root coefficient at each subtree
and attaching this coefficient (or not) to optimal solutions
calculated by the node’s two subtrees. Thus, a case of sub-
optimality may occur only if the optimal solution at node i
needs to be computed by using a suboptimal solution (other
than the computed M[2i,B] and M[2i + 1,B] values, or the
F[2i,B] and F[2i+1,B] values when ci is stored) at (at least)
one of its two subtrees.

Let the suboptimal solution needed to be considered is
over a solution computed over the left subtree of ci (i.e., the
subtree of coefficient c2i). Situations where the suboptimal
solution is over the right subtree (or over both subtrees) are
handled in a similar way.

First Case: M[i,B] does not store ci. Consider that the opti-
mal solution at a coefficient ci that lies at height j +1 of the
error tree for a space constraint B is produced by not stor-
ing ci, but by considering solutions LSOL and RSOL at the
left and right subtrees, respectively, of ci with corresponding
maximum space bL and bR. Let the solution M′[2i,bL] at the
left subtree be a suboptimal one, meaning that M′[2i,bL] <

M[2i,bL]. Then, a solution that would consider RSOL and
the solution of M[2i,bL] requires at most space bL +bR and
has a larger benefit than the optimal solution of LSOL and
RSOL. We therefore reached a contradiction.

Second Case: M[i,B] stores ci and does not attach it in
paths of the solutions of any subtree. In this case, if the
optimal solution needs to consider a sub-optimal solution
LSOL at the left subtree of ci with space bL, then obviously
HCDynL2 examines the solution that stores M[2i,bL] instead
of LSOL, and which results in a larger benefit. We therefore
reached a contradiction.

Third Case: M[i,B] stores ci and attaches it to subopti-
mal solution LSOL (RSOL) at left (right) subtree. In this
case, note that c2i must be stored in the suboptimal solu-
tion LSOL (RSOL) considered at the left (right) subtree (and
thus ci requires space S2 to be stored). Note that the solu-
tion that stores ci and attaches it to the solution of F[2i,bL]
(F[2i + 1,bR]), where bL (bR) denotes the space of the sub-
optimal solution LSOL (RSOL), while also storing M[2i +
1,B−bL−S2] (M[2i,B−bR−S2]) will result in a larger ben-
efit, due to the inductive hypothesis. We therefore reached a
contradiction.

�

Hierarchically Compressed Wavelet Synopses 9

F[i,B] =

−∞
, if i≥ N
or B < S1−1

max

max
0≤bL≤B−S2−1

(c∗i)2+G[2i,bL]+M[2i+1,B−bL−S2−1]

max
0≤bL≤B−S2−1

(c∗i)2+M[2i,bL]+G[2i+1,B−bL−S2−1]

max
0≤bL≤B−S2

(c∗i)2+F[2i,bL]+M[2i+1,B−bL−S2]

max
0≤bL≤B−S2

(c∗i)2+M[2i,bL]+F[2i+1,B−bL−S2]

, otherwise

G[i,B] =

−∞

, if i≥ N
or B < S1−1

max
0≤bL≤B−S1+1

(c∗i)2+M[2i,bL]+

+M[2i+1,B−bL−S1+1]
, otherwise

M[i,B] =

0
, if i≥ N
or B < S1−1

max

max

0≤bL≤B
M[2i,bL]+M[2i+1,B−bL]

F[i,B]

G[i,B]

 , otherwise

(2)

3.2 Running Time and Space Complexities

Consider a node ci at height j in the error tree. Since there
can be at most 2 j− 1 coefficients below the subtree rooted
at node ci, the total budget allocated cannot exceed 2 j · S1.
Therefore, at any node ci, HCDynL2 must calculate at most
min{B,2 jS1} entries (if 2 jS1 < B, all space allotments larger
than 2 jS1 result in the same benefit as that of the allotment
for 2 jS1 and need not be computed), where each requires
time min{B, 2 jS1} to consider all possible space allotments
to the children nodes. Given that there are N/2 j nodes at
height j and summing across all logN heights we obtain
(note that B = 2 jS1 when j = log B

S1
):

logN

∑
j=1

N
2 j

(
min{B,2 jS1}

)2 =
log B

S1

∑
j=1

N
2 j 22 jS2

1 +
logN

∑
j=log B

S1
+1

N
2 j B2

= NS2
1

log B
S1

∑
j=1

2 j +NB2
logN

∑
j=log B

S1
+1

1
2 j

= NS2
1 ·O(

B
S1

)+NB2 ·O(
S1

B
) = O(S1NB) = O(NB).

Note that the reconstruction process simply requires a
top-down traversal of the error tree. Therefore, the total run-
ning time remains O(NB). Using similar arguments, we ob-
tain that the space complexity is:

log B
S1

∑
j=1

N
2 j 2 jS1 +

logN

∑
j=log B

S1
+1

N
2 j B = NS1 logB+NB ·O(

S1

B
)

= O(N logB).

Theorem 2 The HCDynL2 algorithm constructs the optimal
HCWS, given a space budget of B, in O(NB) time using
O(N logB) space.

A Streaming Variant. The HCDynL2 algorithm can be eas-
ily modified to operate in one pass over the data using lim-
ited memory — i.e., in a data stream setting. Recall that

HCDynL2 requires two passes over the data, one bottom-up
for computing the optimal benefit while marking the deci-
sions made, and another top-down for constructing the op-
timal HCWS. The streaming variation, denoted as HCDynL2-

Str, makes two important observations: (i) not all the entries
of the dynamic programming array are needed for the con-
struction of the optimal HCWS; and (ii) in order to recon-
struct the solution, the selected coefficients must be carried
at each node along each M[] and F[] entry. Thus, in princi-
ple our HCDynL2-Str algorithm follows the same observations
made in [14]. However, as explained later in this section, our
main technical contribution in the HCDynL2-Str algorithm in-
volves the ability to calculate the M[] and F[] entries and per-
form the memory cleanup in an efficient way, through some
careful book-keeping. This step was not present in [14]. The
following definition is helpful in our remaining discussion.

Definition 3 A wavelet coefficient is termed as closed if we
have observed all the data values in its support region. A
wavelet coefficient is termed as active if it is not closed and
for which we have already observed at least one data value
in its support region. A wavelet coefficient is termed as in-
active if it is neither active nor closed.

For the first observation, notice that at any time a new
data value di is read, then the active wavelet coefficients,
which lie in path(di), need to be updated and their corre-
sponding M[] and F[] entries need to be calculated again.
Each such active node will also require in its operation the
corresponding M[] and F[] entries of its child node that does
not lie in path(di). Thus, for any space allotment b, only
O(logN) (rather than O(N)) entries M[·,b] and F[·,b] need
to be in memory, for any b — the remaining entries are only
required for the second pass over the error tree.

For the algorithm to operate in one pass, the price that
has to be paid is that of increased space requirements per
M[] and F[] entry. Namely, following the second observa-
tion, we need a factor of O(min{B,2 j}) more space to store
the HCCs calculated so far at each node that belongs at
height j of the error tree (again, this space is required only
for the aforementioned O(logN) active nodes). An impor-
tant observation is that through some careful book-keeping

10 Dimitris Sacharidis et al.

for each entry M[·,b], F[·,b] we only require O(1) time to
calculate the HCCs involved. To achieve this, we maintain
the selected HCCs at each of the aforementioned O(logN)
nodes as a list, where the first element is always the HCC
that includes the root coefficient of the node’s subtree (note
that such a HCC may not exist for the M[] entry). The se-
lected HCCs of a node are updated when data values in its
support region are observed. However, as we explain later
in this section, for all nodes that become closed we need to
perform a cleanup operation that removes from main mem-
ory certain HCCs of these nodes. This cleanup operation is
thus performed only once, and not per observed data value
in their support region.

For each allotment b to the node’s subtree the HCCs for
the M[] and F[] entries can be computed as follows (assum-
ing that bL (bR) space is allocated to the node’s left (right)
subtree):

1. If ci is stored and attached to a path originating from the
node’s left (right) subtree, then create a new HCC that is
the result of adding ci to the first HCC that corresponds
to the solution of the F[2i,bL] (F[2i + 1,bR]). We then
link this new HCC to the second element of the list of
F[2i,bL] (F[2i + 1,bR]) and with the corresponding list
of the M[2i+1,bR] (M[2i,bL]) entry.

2. If ci is stored but is not attached to any path originating
from the node’s left (right) subtree, then create a new
HCC containing only ci. Then link to this HCC the lists
of HCCs that correspond to M[2i,bL] and M[2i+1,bR].

3. If ci is not stored then simply link the lists of HCCs that
correspond to M[2i,bL] and M[2i+1,bR].

All the above operations can be completed in O(1) time,
along with the removal of the HCCs that were created at
node ci (and linked to the HCC lists calculated at the chil-
dren nodes of ci) at the observation of previous data values
(see the above 3 cases). Please note that when we compute
the final list of HCCs for any node ci (after the node becomes
closed), then any HCCs of its children nodes c2i and c2i+1
that are not part of the HCCs stored at node ci are no longer
needed and need to be deleted. This can be easily detected
by examining how the M[i,b] and F[i,b] entries at node ci
were calculated. Assuming that ci belongs at height j of the
error tree, this can be achieved in O(min{B,2 j}) time per
each space allotment b≤ B to ci.

Thus, the overall running time requirements of the al-
gorithm become (since the HCCs of each node are calcu-
lated continuously, but the memory cleanup is performed
just once per node and per space allotment b≤ B):

logN

∑
j=1

N
2 j (
(
min{B,2 j}

)2 + logN ·min{B,2 j})

=
logB

∑
j=1

N
2 j (2

2 j +2 j logN)+
logN

∑
j=logB+1

N
2 j (B

2 +B logN)

= N
logB

∑
j=1

(2 j + logN)+NB(B+ logN)
logN

∑
j=logB+1

1
2 j

= O(NB+N logN logB)+N(B+ logN)

= O(NB+N logN logB).

To summarize, HCDynL2-Str operates in one pass over
the data and gains in space by storing only B logN entries,
which, however, each requires O(B) space for the storage of
its HCCs. Moreover, at any specific moment the currently
selected HCWS can be accessed directly from the root node
of the error tree.

Theorem 3 The HCDynL2-Str algorithm constructs the op-
timal HCWS in one pass, given a space budget of B, in
O(B+ logN logB) amortized time per processed data value
using O(B2 logN) space.

3.3 Achieved Benefit vs. Classic Method

A question that naturally arises is how does the benefit of
the solution achieved by the HCDynL2 algorithm compare to
the one achieved by a traditional technique (Classic) that in-
dividually stores the coefficients with the largest absolute
normalized values. Consider a set S = S1, . . . ,SB of B stored
coefficient values, sorted in non-increasing order of their ab-
solute normalized values, by the traditional thresholding al-
gorithm. Consider the case where these coefficient values lie
in distant regions of the error tree. Using a space constraint
equal to B× (sizeo f (Coord)+ sizeo f (Value)) = B× (S1−
1) the benefit of the HCDynL2 algorithm cannot be smaller
than the benefit of storing the first m = bB×(S1−1)

S1
c coeffi-

cient values of S as hierarchically compressed wavelet co-
efficients, each storing exactly one coefficient value. Thus,
in the worst case the ratio of benefits of the HCDynL2 algo-
rithm over the Classic algorithm, as described above, may be
as low as Bene f it(HCDynL2)

Bene f it(Classic) = Bene f it(S1,...,Sm)
Bene f it(S1,...,SB) ≥

m
B , since the

coefficients in S are sorted.
On the other hand, the best case for the benefit of the HC-

DynL2 algorithm may occur for a storage constraint of B′ =
S1 +(logN +1)×S2. In this case if the logN +1 coefficient
values with the largest absolute normalized values lie on
the same root-to-leaf path of the error tree, then the ratio of
benefits of the HCDynL2 algorithm over the Classic algorithm
will be as high as (for m′ = b B′

S1−1c) : Bene f it(HCDynL2)
Bene f it(Classic) =

Bene f it(S1,...,SlogN+1)
Bene f it(S1,...,Sm′)

≤ logN+1
m′ . Therefore, the following the-

orem holds.

Hierarchically Compressed Wavelet Synopses 11

Theorem 4 The HCDynL2 algorithm, when compared to the
Classic algorithm, given the same space budget, exhibits a
benefit ratio of⌊

B× S1−1
S1

⌋
B

≤ Bene f it(HCDynL2)
Bene f it(Classic)

≤ logN +1⌊
S1+(logN+1)S2

S1−1

⌋ .

An Improved-Benefit Variant. It is important to emphasize
that the HCDynL2 algorithm can be easily modified to guar-
antee that its produced solution has a benefit at least equal
to the one of the traditional approach. This can be achieved
by allowing HCCs with a single stored coefficient value to
drop the very small overhead of the single bit and be stored
in a separate storage. In this case, the first stored coefficient
in a HCC requires space S1−1, the second coefficient value
in the same HCC requires additional space equal to S2 + 1,
while any additional coefficient values in the same HCC re-
quire space S2 to be stored. This results in constructing a
modified HCWS∗ synopsis.

The main difference of the modified algorithm, denoted
as HCDynL2∗, compared to the discussion of Section 3 is that
now, due to the different space needed for the second and
third coefficient values of each HCC, two suboptimal solu-
tions need to be maintained (see Equation 2): (i) F[i,B], the
benefit of the optimal solution when assigning space at most
equal to B to the subtree of coefficient ci and when both
ci and one of its children (c2i or c2i+1) are stored; and (ii)
G[i,B], the benefit of the optimal solution when assigning
space at most equal to B to the subtree of coefficient ci and
ci is stored as the bottom-most coefficient in a path. Note,
that for the second suboptimal solution the space required
is S1−1, as discussed. For the first suboptimal solution two
cases exist: (a) ci is the second coefficient in a path, hence,
the space required is S2 + 1 and further, a suboptimal solu-
tion G[] in one of its children must be combined with an op-
timal solution M[] in the other child (the first two non-trivial
cases of F[i,B] in Equation 2); and (b) ci is not the second
coefficient (it could be the third or more), hence, the space
required is S2 and further, a suboptimal solution F[] in one of
its children must be combined with an optimal solution M[]
in the other child (the last two non-trivial cases of F[i,B] in
Equation 2. Therefore, the following theorem holds.

Theorem 5 The HCDynL2∗ algorithm constructs a modified
HCWS∗ synopsis such that the obtained benefit is never less
than that of the Classic algorithm, given the same space bud-
get:

Bene f it(HCDynL2∗)≥ Bene f it(Classic).

It is important to note that the asymptotic running time
and space requirements of the HCDynL2∗ algorithm are the
same as those of the HCDynL2 algorithm. However, since its
implementation requires the evaluation of three DP recur-
rences, its actual running time and space requirements are

Symbol Description
APPRM[i,x] Approximate value for optimal benefit when assigning at most

space x to the subtree rooted at coefficient ci
APPRF[i,x] Approximate value for optimal benefit when assigning at most

space x to the subtree rooted at coefficient ci and when ci is
forced to be stored

{pi
j} Set of breakpoints for APPRM[i, ·]

{qi
k} Set of breakpoints for APPRF[i, ·]

ε Approximation factor
δ Degradation factor incurred at each level

Table 4 Notation used in HCApprL2 Algorithm.

about 50% increased over the ones of HCDynL2. Finally, a
streaming variant of the HCDynL2∗ algorithm can be obtained
in a manner analogous to that of HCDynL2. Similarly, an ap-
proximation algorithm for the HCDynL2∗ algorithm can be
obtained in a manner analogous to the approximation algo-
rithm of HCDynL2 (presented in Section 4).

4 HCApprL2: An Approximation Algorithm

In this section we propose an approximation algorithm for
efficiently constructing hierarchically compressed wavelet
synopses. Our algorithm, termed HCApprL2, offers signifi-
cant improvements in time and space requirements over HC-

DynL2 while providing tunable error guarantees. The HCAp-

prL2 algorithm constructs a HCWS that has a benefit that
does not exceed the optimal synopsis, but definitely not less
than 1

1+ε
of the optimal benefit, for some given parameter ε .

Clearly, smaller values for ε lead to more accurate synopses;
HCApprL2 solves Problem 2 optimally for ε = 0.

The HCApprL2 algorithm constructs functions APPRM[],
APPRF[] and computes their values at some space allotment
in a similar manner to how HCDynL2 computes M[] and F[]
values (i.e., the values at a non-leaf node depend on the val-
ues of its children) but does so for a sparse set of space
allotments, termed breakpoints, rather than for all possible
allotments.

The HCApprL2 algorithm operates on the error tree in a
bottom-up manner. At each node it creates a set of candidate
breakpoints by combining breakpoints from the children of
the node. Then, in a two-phase trimming process it elimi-
nates some of these candidates to obtain the actual break-
points of the node. This trimming process is responsible for
bounding the error incurred by not examining all space al-
lotments, as it will become apparent in the next section.

4.1 Breakpoint Calculation

The crux of the HCApprL2 algorithm lies in the calculation
of the breakpoints and their corresponding benefit values
for functions APPRM[] and APPRF[] at each node. The al-
gorithm proceeds in a bottom-up manner, starting from the
leaf nodes at height 1.

12 Dimitris Sacharidis et al.

APPRF[i, pL
j + pR

k +S1] =(c∗i)2+APPRM[2i,pL
j]+APPRM[2i+1,pR

k]

APPRF[i,qL
j + pR

k +S2] =(c∗i)2+APPRF[2i,qL
j]+APPRM[2i+1,pR

k]

APPRF[i, pL
j +qR

k +S2] =(c∗i)2+APPRM[2i,pL
j]+APPRF[2i+1,qR

k]

 (3)

APPRM[i, pL
j + pR

k +S1] =APPRF[i,pL
j +pR

k +S1]

APPRM[i,qL
j + pR

k +S2] =APPRF[i,qL
j +pR

k +S2]

APPRM[i, pL
j +qR

k +S2] =APPRF[i,pL
j +qR

k +S2]

APPRM[i, pL
j + pR

k] =APPRM[2i,pL
j]+APPRM[2i+1,pR

k]

 (4)

Assume that node ci, at height 1, is a non-zero leaf coef-
ficient. In this case there are two breakpoints 0 and S1 with
approximate benefits 0 and (c∗i)

2 respectively for both ap-
proximation functions. In the case of a zero valued leaf co-
efficient APPRM[i, ·] has only breakpoint 0 with zero benefit,
whereas APPRF[i, ·] has breakpoints 0,S1 with benefits −∞

and 0 respectively.
For all non-leaf nodes the breakpoint calculation pro-

ceeds following the same steps: (i) a set of candidate break-
points is created by combining all breakpoints of the chil-
dren; (ii) a trimming process reduces this set to the actual
breakpoints to be used as input for the first step in the parent
node.

Consider a non-leaf node ci at height l; since HCApprL2

proceeds bottom up all breakpoints for nodes lower in the
tree have been calculated. Thus, let {pL

j}, {qL
k} denote the

set of breakpoints for APPRM[2i, ·] and APPRF[2i, ·] func-
tions for the left child of ci and let {pR

j }, {qR
k } denote the

set of breakpoints for APPRM[2i+1, ·] and APPRF[2i+1, ·]
functions for the right child of ci.

The candidate breakpoints for APPRF[i, ·] and the corre-
sponding benefit values are calculated combining all break-
points from sets {pL

j}, {qL
k}, {pR

j }, {qR
k } as shown in Equa-

tion 3 — candidate breakpoints of space more than B are
easily identified and rejected. Observe that these equations
correspond to the non-trivial cases of the defining recurrence
for F[i, ·] (Equation 1). The algorithm considers the follow-
ing cases for all j,k:

• Store ci using space S1 and combine all (approximately)
optimal solutions APPRM[2i, pL

j], APPRM[2i+1, pR
j].

• Store ci using space S2 and combine all (approximately)
optimal when forced to store c2i solutions APPRF[2i,qL

k]
with all (approximately) optimal solutions APPRM[2i +
1, pR

j].

• Store ci using space S2 and combine all (approximately)
optimal solutions APPRM[2i, pL

j] with all (approximately)
optimal when forced to store c2i+1 solutions APPRF[2i+
1,qR

k].

Similarly, the candidate breakpoints for APPRM[i, ·] and
their corresponding benefit values are also calculated com-
bining all breakpoints from sets {pL

j}, {qL
k}, {pR

j }, {qR
k } as

shown in Equation 4 — candidate breakpoints of space more
than B are easily identified and rejected. Again, observe that
these equations correspond to the non-trivial cases of the
defining recurrence for M[i, ·] (see Equation 1), which in ad-

dition to the candidate breakpoints considered for APPRF[i, ·]
considers the following case, for all j,k: Do not store ci and
combine all (approximately) optimal solutions, i.e., the pairs
APPRM[2i, pL

j], APPRM[2i+1, pR
j].

Once all candidate breakpoints have been calculated we
perform a two-phase trimming process for each approxima-
tion function, to reduce the number of breakpoints.

First Phase. We remove the useless configurations — those
that cost more but have less benefit than others. This can be
done by a simple ordering of the configurations increasingly
by their approximate benefit values and a subsequent linear
scan.

Second Phase. The final breakpoints {pi
j}, {qi

k} are set as
follows. Consider the case of the approximate benefit func-
tion APPRM[i, ·]. Set pi

1 equal to the first candidate break-
point (after sorting); it is easy to see that this breakpoint al-
ways corresponds to space 0. The rest of the breakpoints are
discovered iteratively: assuming breakpoint pi

k−1 has been
found, breakpoint pi

k is the smallest candidate breakpoint
such that APPRM[i, pi

k] > (1 + δ)APPRM[i, pi
k−1], for some

parameter δ which depends on the desired approximation
factor ε and whose value will be determined later in this
section.

The following lemmas are a direct result of the trimming
process.

Lemma 2 For any node that belongs at height j of the error
tree, there can be at most R j = O

(
min{B,2 j, 1

δ
log ||WA||}

)
breakpoints.

Proof Certainly, there can be no more than B breakpoints
for each approximation function. Similarly, since there can
be at most 2 j − 1 coefficients in the subtree rooted at each
node that belongs at height j, the total number of space en-
tries, and thus breakpoints, cannot exceed 2 jS1 = O(2 j). Ad-
ditionally, there can be no more than log1+δ M[i,B] break-
points for APPRM[i, ·] (and no more than log1+δ F[i,B] for
APPRF[i, ·]), as M[i,B] (resp. F[i,B]) is the highest possible
benefit that can be attained at node ci for space B. Since this
benefit cannot be more than the energy of the wavelet trans-
form ||WA||2, the lemma easily follows for small δ values.
�

Lemma 3 Let {pi
j} be the set of breakpoints for approxima-

tion benefit function APPRM[i, ·]. If b is a candidate break-
point such that b ∈ [pi

k, pi
k+1), then APPRM[i,b] ≤ (1 + δ)·

APPRM[i, pi
k] — i.e., b is covered by pi

k within a (1 + δ)
degradation. Analogous result holds for function APPRF[].

Hierarchically Compressed Wavelet Synopses 13

Proof If b is not discarded in the first phase of the trimming
process it is straightforward to see that the lemma holds.
Now, assume that b was discarded in the first phase. There-
fore, there must exist a candidate breakpoint b′ < b not dis-
carded in the first phase with APPRM[i,b′] ≥ APPRM[i,b]
such that b′ is the highest non-discarded breakpoint smaller
than b. Observe that b′ and b are covered by the same break-
point pi

k (b′ might be the breakpoint pi
k): b,b′ ∈ [pi

k, pi
k+1)

and that the lemma holds for b′. Therefore, APPRM[i,b] ≤
APPRM[i,b′] ≤ (1 + δ)APPRM[i, pi

k] and the lemma holds
for b. �

By aggregating the degradation occurred at all descen-
dants of a node we obtain the following.
Lemma 4 Assume node ci is at height h of the error tree
(equivalently at level logN−h), and let {pi

j} and {qi
j} be

the set of breakpoints for APPRM[i, ·] and APPRF[i, ·] respec-
tively. Also let x,y be some arbitrary space allotments and
let breakpoints pi

k,q
i
k be such that x ∈ [pi

k, pi
k+1) (or x≥ pi

k,
if pi

k is the last breakpoint) and y ∈ [qi
k,q

i
k+1) (or y ≥ qi

k,
if qi

k is the last breakpoint). The approximate benefit value
computed at node ci (the approximate benefit value when ci
is forced to be stored) for space pi

k (resp. qi
k) is not less than

1
(1+δ)h−1 of the optimal value (resp. optimal value when ci is

forced to be stored). That is, M[i,x]≤(1+δ)h−1APPRM[i, pi
k]

and F[i,y]≤(1+δ)h−1APPRF[i,qi
k].

Proof We prove the lemma for APPRF[i, ·] and APPRM[i, ·],
by induction on the height h of the error tree node ci belongs
to. The base case h=1 holds by construction: Assume coeffi-
cient ci is non-zero; thus only breakpoints pi

1=0, pi
2=S1 and

qi
1=0, qi

2=S1 exist for approximation functions APPRM[i, ·]
and APPRF[i, ·] respectively. Clearly, (i) when x ∈ [pi

1, pi
2),

APPRM[i, pi
1]=M[i,x]; (ii) when y ∈ [qi

1,q
i
2), APPRF[i,qi

1]=
F[i,y]; (iii) when x ≥ pi

2, APPRM[i, pi
2]=M[i,x]; and (iv)

when y≥ qi
2, APPRF[i,qi

2]=F[i,y]. In the case of a zero val-
ued coefficient ci, only breakpoint pi

1 exists and the reason-
ing is similar.

Assuming the hypothesis holds for all nodes at height
h we will show that it holds for nodes at height h + 1. We
will only consider the approximation function APPRF[i, ·]
for node ci at height h + 1, as the proof for APPRM[i, ·] is
similar. Further, assume that the optimal benefit F[i,y] when
ci is forced to be stored for a space budget of y is constructed
from the second non-trivial clause of Equation 1 by allotting
space S2 to coefficient ci, yL to the left subtree and y−yL−S2
to the right subtree; that is, F[i,y] = (c∗i)

2 +F[2i,yL]+M[2i+
1,y−yL−S2]. The proof is similar for the other clauses and
thus omitted.

If {qL
j} and {pR

j } denote the sets of breakpoints for func-
tions APPRF[2i, ·] and APPRM[2i + 1, ·] respectively, let qL

k
be the highest breakpoint not exceeding yL and let pR

k be
the highest breakpoint less than y−yL−S2. By the induction
hypothesis

F[2i,yL]≤ (1+δ)h−1APPRF[2i,qL
k] and

M[2i+1,y− yL−S1]≤ (1+δ)h−1APPRM[2i+1, pR
k].

Define b = qL
k + pR

k + S1. Certainly, b was a candidate
breakpoint for function APPRF[i, ·] and considered by our
HCApprL2 algorithm (see Equation 3):

APPRF[i,b] = (c∗i)
2 + APPRF[2i,qL

k]+ APPRM[2i+1, pR
k].

Using the above equation and the induction hypothesis, op-
timal value F[i,y] is bounded as follows.

F[i,y]=(c∗i)
2 + F[2i,yL]+ M[2i+1,y− yL−S2]

≤(c∗i)
2 +(1+δ)h−1

(
APPRF[2i,qL

k]+ APPRM[2i+1, pR
k]
)

≤(1+δ)h−1APPRF[i,b]

Now, either b belongs to [qi
k,q

i
k+1) or not. Consider the

first case. By Lemma 3 APPRF[i,b] ≤ (1 + δ)APPRF[i,qi
k]

and thus:

F[i,y]≤ (1+δ)h−1APPRF[i,b]≤ (1+δ)hAPPRF[i,qi
k].

In the other case, observe that b must be smaller than qi
k,

because b ≤ y ∈ [qi
k,q

i
k+1). Therefore, since APPRF[i,b] ≤

APPRF[i,qi
k]:

F[i,y]≤ (1+δ)h−1APPRF[i,b]≤ (1+δ)h−1APPRF[i,qi
k].

Thus, in either case F[i,y]≤ (1+δ)hAPPRF[i,qi
k]. �

Finally, we obtain the following.

Theorem 6 The HCApprL2 algorithm provides a HC synop-
sis to Problem 2 that needs space not more than B and has
benefit not less than 1

1+ε
of the optimal benefit. Assuming

p0
k is the highest breakpoint of function APPRM[0, ·] not ex-

ceeding B, we have M[0,B]≤ (1+ ε)APPRM[0, p0
k].

Proof Apply Lemma 4 for M[0,B] setting δ = ε

logN .
�

4.2 Space and Running Time Complexities

The space and time complexity of the HCApprL2 algorithm
depend on the number of breakpoints R j (rather than solely
on B) for each approximation function at each node that be-
longs at height j of the error tree. Lemma 2 provides a bound
for this number, if one sets δ = ε

logN : Rmax = O
(
min{B,2 j,

1
ε

logN log ||WA||}
)
.

At each node and for each approximation function, the
HCApprL2 algorithm first computes candidate breakpoints by
combining all breakpoints from the children nodes (in O(R2

j)
time and space), sorts them (in O(R2

j logR j) time) and per-
forms the trimming process (in O(R2

j) time and space). Thus,

14 Dimitris Sacharidis et al.

the time requirement is O(R2
j logR j) per node at height j of

the error tree. HCApprL2 requires a temporary space of O(R2
j)

to perform the trimming process, but registers only O(R j)
space per node. Using similar reasoning with the complex-
ity analysis of the HCDynL2 algorithm we derive the fol-
lowing running time complexity our algorithm (by setting
K = min{B, 1

ε
logN log ||WA||} - observe the time require-

ment increases by a factor of logR j due to the sorting in-
volved during the breakpoint calculation):

O(
logN

∑
j=1

N
2 j

((
min{2 j,K}

)2
logmin{2 j,K}

)
) =

O(
logK

∑
j=1

N
2 j j22 j +

logN

∑
j=logK+1

N
2 j K2 logK)

= O(N
logK

∑
j=1

j2 j +NK2 logK
logN

∑
j=logK+1

1
2 j)

= O(NK logK).

Using a similar calculation for the space requirements of the
algorithm, the following Theorem easily follows.

Theorem 7 Given space budget B, the HCApprL2 algorithm
constructs a HCWS, in O(NK logK) time using O(N logK)
space, where K = min{B, 1

ε
logN log ||WA||}. The streaming

variant of this algorithm requires only O(K2 logN) space.

Note that the streaming variant of the algorithm is anal-
ogous to the corresponding variant of the optimal DP algo-
rithm, and is thus omitted from our presentation.

5 HCGreedyL2: A Greedy Heuristic

Due to the large space and running time requirements of the
HCDynL2 and HCApprL2 algorithms, we now seek to devise
a more efficient greedy solution for the same optimization
problem. At first sight our optimization problem looks sim-
ilar to the classical knapsack problem. However, our opti-
mization problem is much more difficult for two reasons.
First, even though the benefit of including any given coeffi-
cient in the synopsis is fixed, its space requirement depends
on the position of the coefficient it the hierarchical path; it
may require either S1 or S2 space. Second, considering the
search space of all possible HCCs, observe that once a HCC
is chosen, there is a large number of HCCs which become
invalid and cannot be part of the solution; these are the hier-
archically compressed coefficients that overlap with the cho-
sen HCC. This dependency amongst the candidate HCCs is
not typical in knapsack-like problems for which there exist
greedy algorithms with tight approximation bounds.

In analogy to most greedy heuristics for knapsack-like
problems, we try to formulate candidate solutions and utilize

Symbol Description
GrMi Non-stored candidate path in ci’s subtree with

the estimated maximum per space benefit
GrFi Non-stored candidate path in ci’s subtree with the

estimated maximum per space benefit when storing ci
Owneri The hierarchically compressed coefficient in which ci belongs to

(Ø if ci has not been stored)
GrMi.b Benefit of GrMi
GrMi.sp Needed space for GrMi
GrFi.b Benefit of GrFi
GrFi.sp Needed space for GrFi
Statei[0..2] Bitmap of node i, consisting of 3 bits:

- If State(0) is set, ci has already been selected for storage
- If State(0) and State(1) are set, ci = bottom(Owneri)
- Otherwise, if State(0) is set, State(2) denotes if set (not set)
that ci is part of a path through its left (right) subtree

chMi, 2-bit bitmaps for retracing the algorithm choices (determine
chFi through which action the paths GrMi and GrFi were formed)

Table 5 Notation used in HCGreedyL2 Algorithm.

a per-space benefit heuristic at each step of the algorithm.
In particular, our proposed HCGreedyL2 algorithm greedily
allocates its available space by continuously selecting (un-
til the space budget is exhausted) for storage the candidate
path that (i) does not overlap any of the already selected for
storage paths; and (ii) is estimated to exhibit the largest per
space benefit, if included in the solution. To increase the
effectiveness of the algorithm, it is crucial that, whenever
possible, candidate paths be combined with paths already
selected for storage, and that such storage dependencies be
exploited. As we will explain shortly, this can be achieved
by some careful book-keeping.

The operation of the algorithm is based on two main
steps, that are repeated several times, and that we will detail
shortly: (i) Selecting good candidate paths per subtree; and
(ii) Marking candidate paths for storage and properly ad-
justing the benefits of non-stored candidate paths. The first
of these phases first occurs at the initialization phase of the
algorithm by visiting all the nodes of the error tree, in order
to setup the values of several variables at each node. Table 5
provides a synopsis of these variables, and of the notation
used in the entire HCGreedyL2 algorithm. Appropriate defini-
tions will be provided in our discussion whenever necessary.
After this initialization phase, the coefficients in the path that
is estimated at the root node to exhibit the best per space
benefit are visited and marked for inclusion in the final solu-
tion (by modifying the State bitmap of these nodes). This is
achieved by the second phase. Following each such marking
process, the first phase needs to be called for each visited
node of the error tree. Observe that calls to the second phase
and all subsequent calls to the first phase only visit nodes in
the currently selected path.

Before proceeding to our discussion, it is important to
emphasize that the paths GrMi, GrFi and Owneri (referenced
in Table 5) are not stored at each node, but can rather be
reconstructed by an appropriate traversal of the error tree.

Hierarchically Compressed Wavelet Synopses 15

5.1 Candidate Path Selection

The computation of the best candidate path in a subtree of
the error-tree structure is a bottom-up procedure. At each
step of the algorithm, at each node ci of the error tree we
store the benefit and the corresponding space of two candi-
date paths: (i) the candidate path GrMi in the subtree of ci
that is estimated to achieve, if stored, the best per space ben-
efit; and (ii) the candidate path GrFi of ci’s subtree that is
estimated to achieve the best per space benefit while storing
the coefficient ci. This implies that GrMi might be any path
of the subtree rooted at ci, whereas GrFi has to be a path
containing ci.

In order to compute these two candidate paths along with
their corresponding benefits and their needed space, the HC-

GreedyL2 algorithm considers combining the coefficient value
ci with the candidate paths computed at ci’s two subtrees.
This process utilizes some information that is produced dur-
ing the operation of the algorithm and is stored as a bitmap
State in each node, whereas the choices made are stored in
chF, chM (see Table 5).

In the following, we omit discussion on what happens
in the case of the root node for exposition purposes; the
required changes due to the root having a single child are
straightforward.

5.1.1 Computing GrFi

The computation of GrFi depends on whether ci has been
stored (i.e., whether Statei(0) is set).

Coefficient ci has been stored. In this case there is no can-
didate path that can store ci. Thus, in this case we have GrFi
= Ø and we set GrFi.b = GrFi.sp = 0 and chFi = 00.

Coefficient ci has not been stored. The following choices
should be considered and the one with the highest per space
benefit is selected (by appropriately setting the value of chFi):

1. Storing simply ci (chFi = 01). The space requirements of
this solution depends on whether ci can be attached to an
already selected path. If ci is a non-leaf node in the er-
ror tree and either State2i(0) or State2i+1(0) is set, then ci
can be attached to such a path (through the corresponding
subtree) and GrFi.sp = S2. Otherwise, we set GrFi.sp =
S1. This solution has a benefit equal to (c∗i)

2 if the avail-
able space (at the step of the algorithm when this compu-
tation is performed) is at least GrFi.sp, or 0 otherwise.

2. Storing ci and combining it with GrF2i (chFi = 10) (or
combining it with GrF2i+1 (chFi=11)). This solution has
an overall space requirement of S2+GrF2i.sp (resp., S2+
GrF2i+1.sp) and a benefit of (c∗i)

2+GrFi.b (resp., (c∗i)
2

+ GrF2i+1.b) if the available space (at the step of the al-

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 648 65 648 65 000 11 01
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 648 65 972 98 000 10 11
2 584 131 584 131 000 11 11
3 648 65 1134 131 000 10 11
1 3844 65 3844 65 000 11 01
0 10244 98 10244 98 000 11 11

Table 6 Computed Values at Initialization Phase.

gorithm when this computation is performed) is at least
GrFi.sp, or −∞ otherwise.

Moreover, in all three cases presented above, we de-
crease the GrF.sp values by S1−S2 if the parent node of ci
has been marked for storage and is also the bottom-most co-
efficient in its HCC. This is because GrFi can help reduce,
if selected for storage, the storage overhead for the parent
node of ci.

5.1.2 Computing GrMi

The computation of GrMi also depends on whether ci has
been stored (i.e., whether Statei(0) is set).

Coefficient ci has not been stored. The following choices
should be considered and the one with the highest per space
benefit is selected (by appropriately setting the chMi value):

1. The candidate path of solution GrFi (chMi = 11).

2. For non-leaf nodes, GrMi copies a candidate path from
one of its children, either GrM2i (chMi=01) or GrM2i+1
(chMi=10), selecting the one with the highest per space
benefit.

Coefficient ci has been stored. If ci is a leaf node, then
GrMi = Ø and we set GrMi.b = GrMi.sp = 0 and chMi =
00. For non-leaf nodes, GrMi examines the candidate paths
GrM2i and GrM2i+1 from its children nodes and copies the
one that exhibits the largest per space benefit.

Example 8 In Table 6 we depict the calculated GrMi, GrFi,
Statei, chMi and chFi values and bitmaps computed at each
node of Figure 1 during the initialization phase of the HC-

GreedyL2 algorithm. Based on the normalized coefficient val-
ues presented in Section 2, the benefit of storing each of the
16 coefficients is: [6400, 3844, 242, 162, 4, 100, 0, 324,

288, 2, 0, 242, 0, 0, 0, 648]. In this example, the size re-
quired to store a coefficient coordinate or a coefficient value

16 Dimitris Sacharidis et al.

has been set to 32 bits. The nodes in Table 6 have been or-
dered according to their resolution level. Details on the se-
lected HCCs are provided later in this section. However, it
is interesting to note that, even though the final selection of
the HCCs has been presented in Section 2, the stored HCCs
are produced by successive steps where smaller HCCs are
merged. For example, by examining the GrF1 values we ob-
serve that the HCC that is estimated to achieve the best per
space benefit at node c1 while also storing c1 contains only
the node c1, and not the entire path c15,c7,c3,c1. This path
will gradually be formed by the algorithm.

5.2 Marking Paths for Storage

After the path with the overall per space benefit has been
estimated (GrM0), and its space GrM0.sp is subtracted from
the available space, the process of traversing the error tree
to mark the coefficients in GrM0 for storage is simple, due
to the storage of the chM and chF bitmaps at each node.
This top-down recursive process starts at the root node and
descends the path that leads to the node bottom(GrM0). The
steps of this process are:

1. At each node ci of this path, we are asked to reconstruct
either the path GrMi or the path GrFi. Notice that recon-
structing GrMi may lead to reconstructing GrFi if chMi =
11.

2. This process will never visit a node where the correspond-
ing chMi or chFi values are equal to ’00’.

3. If reconstructing GrFi and chFi = 01, then ci is marked
as stored by setting the bit Statei(0) to 1. If in this case
GrFi.sp = S1, then Statei(1) is set and we recomputed
the GrF and GrM values at the two children nodes of ci,
as described in Section 5.1. Otherwise, we reset State(1)
and assign the value of Statei(2) depending on which
path ci can be attached to (if it can be attached to paths
from both subtrees, pick any one of them randomly).

4. If reconstructing GrFi and chFi = 10 (11), we mark ci
for storage by setting Statei(0) to 1, resetting the value of
Statei(1) and setting the value of Statei(2) to 1 (0, respec-
tively). We also recurse to reconstruct GrF2i (GrF2i+1).

5. If reconstructing GrMi and chMi = 01 (10), then we re-
curse to reconstruct GrM2i (GrM2i+1). After this recur-
sion, we need to check if the newly stored path in the
subtree of c2i (c2i+1) can be attached to ci. By following
the process described in Section 5.1, if this is detected the
value of Statei(1) is reset and the value of Statei(2) is set
to 1 (0, correspondingly). Also, in this case, the GrF and
GrM values of c2i+1 (c2i) need to be recalculated, since
any path containing c2i+1 (c2i) cannot lower, any more,
the storage cost of ci.

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 648 65 648 65 000 11 01
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 648 65 972 98 000 10 11
2 242 33 242 33 000 11 01
3 1134 99 1134 99 000 11 11
1 1134 99 0 0 110 10 00
0 1134 99 0 0 100 10 00

Table 7 Computed Values after Marking the first Selected HCC for
Storage.

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 0 0 0 0 110 00 00
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 0 65 0 0 100 01 00
2 584 131 584 131 000 11 11
3 0 65 0 0 100 01 00
1 584 131 0 0 100 01 00
0 584 131 0 0 100 10 00

Table 8 Computed Values after Marking the Second Selected HCC for
Storage.

6. After possibly recursing to solutions in subtrees of ci, the
algorithm needs to recalculate the values of GrMi and
GrFi, and all the corresponding chMi and chFi variables
by executing the Candidate Path Selection phase on the
visited nodes.

The only detail that we have not discussed is what hap-
pens if the selected path does not fit within the remaining
space budget. In this case we simply traverse the selected
path but mark for inclusion in the final solution only the
highest coefficients in the path, such that the space constraint
is not violated (we thus omit coefficients at the bottom of the
path).

Example 9 Returning our attention to Table 6, we notice
that based on the chM0 and chF0 bitmaps, the selected solu-
tion will need to store the coefficient c0 and combine it with
an HCC at its subtree (since chF0=11). The bit State0(0) is
thus set, while the bit State0(1) remains unset since this co-
efficient will surely not be the bottom-most coefficient in its
HCC. Since node 0 has only one child node in the error tree,
we must decide whether to consider that node 1 lies in its
left or right subtree. We have selected the latter option and,
thus, do not set the State0(2) bit. By recursing at node 1, we

Hierarchically Compressed Wavelet Synopses 17

see based on the chM1 and chF1 bitmaps, that the coefficient
c1 needs to be stored, and that we do not need to recurse to
children nodes. In this case, the bits State1(0) and State1(1)
need to be set. Since c1 became a new bottom-most coeffi-
cient at a new HCC, we recompute the GrF and GrM values
at its two children nodes, in order to take into account that
GrF paths from these subtrees could help lower the stor-
age cost of c1. Please note that the GrF values at nodes c2
and c3 both change (see Table 7), compared to the values in
Table 6. Then, moving bottom-up we need to compute the
GrF1, GrM1, GrF0 and GrM0 values, while properly setting
the chM and chF bitmaps at nodes c1 and c0. The calcu-
lated entries at each node after marking for storage nodes c0
and c1 are depicted in Table 7.

In Table 8 we depict the calculated entries after the algo-
rithm stores the next HCC, which contains the coefficients
c15, c7 and c3, and combines it with the first selected HCC.
This can be easily identified by examining the State bitmaps.
The 5 entries that are set at the first bit (from the left) of
these bitmaps translate to 5 stored coefficient values. The 1
entry that is set at the second bit of these bitmaps translates
to 1 different HCCs. Since c15 does not have any children
nodes, we do not needs to recompute the GrF and GrM at
any of its descendant nodes. However, since c1 seizes to be
the bottom-most coefficient at a HCC, the GrF2 and GrM2
values are recalculated to take into account that no path stor-
ing c2 can lower the storage cost of c1.

At this stage of the algorithm, the last HCC, containing
nodes c11, c5 and c2 can be stored.

5.3 Storing the Selected Solution

The process of storing the selected HCCs follows a preorder
traversal of the nodes in the error tree. At each visited node
ci, its input is a set (possibly empty) of straddling coefficient
values. This set corresponds to coefficient values that belong
to the same HCC, but where the lowest node in that HCC has
not yet been visited. Any time the algorithms reaches a node
ci where the two bits Statei(0) and Statei(1) are both set,
then the index/coordinate of ci and its coefficient value along
with the straddling coefficient values form a HCC. In this
case, the input list to the both subtrees of ci will be empty.

If only the Statei(0) is set, but not the bit Statei(1), then
depending on the value of Statei(2) the value ci is attached
to the list of straddling coefficient values for the appropri-
ate subtree of ci (the input list to the other subtree will be
empty). If, finally, Statei(0) is not set, then we simply re-
curse to the two subtrees with their inputs being empty lists
of straddling coefficients.

5.4 Space and Running Time Complexities

For each node of the error tree there are O(1) stored vari-
ables. Thus, the needed space is O(N). At the initializa-
tion step, the calculation of the GrMi, GrFi, chMi and chFi
variables requires O(1) time. Then, the algorithm repeat-
edly marks at least one coefficient for storage. Thus, at most
O(B

S2
) steps can be performed. At each step a path originat-

ing at the root of the error tree is traversed in order to mark
for storage the nodes in GrM0. This process visits at most
O(logN) nodes. At each node, the recalculation of the GrMi,
GrFi, chMi and chFi variables requires O(1) time. Finally,
the storage of the marked coefficients can be achieved in a
single pass of the error tree. Thus, the overall running time
complexity is O(N+ B

S2
logN) = O(N+B logN). Note that the

running time complexity are on par with that of constructing
a conventional synopsis — hence, no significant increase in
data processing time is expected (see also Section 8).

Theorem 10 The HCGreedyL2 algorithm constructs a HCWS
given a space budget of B, in O(N + B logN) time using
O(N) space.

6 HCGreedyL2-Str: A Streaming Greedy Algorithm

In order for our algorithms to adapt to streaming environ-
ments, we propose a streaming greedy algorithm, termed as
HCGreedyL2-Str in our discussion, for our optimization prob-
lem. As expected, the HCGreedyL2-Str algorithm shares some
common characteristics with the HCGreedyL2 algorithm in
the way that it constructs candidate HCCs for storage.

6.1 Order of Processed Wavelet Coefficients

The algorithms proceeds by reading the data values one by
one and by updating the (normalized) values of the wavelet
coefficients. Note that the total number of data values to be
read does not need to be known in advance, since the nor-
malized value of a coefficient depends only on the number
of data values that lie beneath it in the error tree (and, thus,
from the difference in levels between the node and leaf co-
efficient values in the error tree). This process has well been
documented in prior work [15].

When reading the n-th data value, the values of the wave-
let coefficients that lie in path(n) are updated. According to
Definition 3, a wavelet coefficient is closed only when all
the data values that beneath it in its error tree have been
read. Depending on the value of n, the number of coeffi-
cients that become closed due to a new data value ranges
from 0 to logn + 1. These newly closed coefficients all be-
long to the bottom portion of path(n) that originates from
the last read data value and proceeds upwards in the error

18 Dimitris Sacharidis et al.

tree until path(n) reaches the last error tree node for which
the data value belongs to its right subtree. Our HCGreedyL2-

Str algorithm processes these newly closed nodes of the error
tree in a bottom-up fashion.

6.2 Used Data Structures

At each step of the algorithm, the current selection of HCCs
is stored in a min-heap structure where the HCCs are ordered
based on their per space benefit.4 Each HCC is identified by
its bottommost coefficient. We defer a detailed description
and the implementation of this min-heap structure until later
in this section.

The min-heap does not store each HCC explicitly, but
rather a pointer to a structure containing: (i) The HCC; (ii)
The benefit of the HCC; and (iii) The required space for
the HCC. Please note that in order to guarantee that swap-
ping any pair of HCCs in the min-heap can be performed
in O(1) time (and thus guarantee the worst time complex-
ity of the First(), Pop() and Insert() operations, described in
Section 6.4), we cannot simply store the HCCs in the min-
heap, due to their variable size. We finally note that the num-
ber of different HCCs stored in the min-heap is obviously
O(B

S2
) = O(B).

Another important characteristic of our HCGreedyL2-Str

algorithm is that it does not fully combine the stored HCCs,
even though it accurately estimates their space requirements.
This means that there may exist pairs of HCCs (i.e., HCC hA
and HCC hB) in the min-heap such that parent(top(hA)) =
bottom(hB). In such a case, even though hA and hB are not
combined in one HCC, the storage overhead for bottom(hB)
is correctly set to S2 in our algorithm. We explain in Sec-
tion 6.5 why our HCGreedyL2-Str algorithm utilizes such an
approach of storing HCCs.

Besides the min-heap structure our HCGreedyL2-Str algo-
rithm also utilizes two hash tables, termed as TopCoeff and
BottomCoeff, with a maximum of O(B

S2
) entries each. The

TopCoeff (BottomCoeff) hash table maps the coordinate ci
of a coefficient to the stored HCC hA in the min-heap, such
that ci = top(hA) (ci = bottom(hA)). If the coordinate ci is
not the top (bottom) coefficient value stored in any HCC,
then the TopCoeff (BottomCoeff) hash table does not con-
tain an entry for it.

6.3 Operations at each node

For each processed node ci our HCGreedyL2-Str algorithm
generates a straddling candidate HCC, termed as SGrFi. This

4 We can alternatively use any data structure, such as an AVL-tree,
which provides a worst case cost of O(logB) for the (i) search of the
stored item with the minimum per space benefit; (ii) the insertion of an
item; and (iii) the deletion of an item.

straddling HCC is similar to GrFi, in that it corresponds to
the non-stored candidate path in the node’s subtree with the
estimated maximum per space benefit when storing ci. Thus,
its computation is similar, with the only difference that due
to the streaming nature of the algorithm and the bottom-up
way of processing closed coefficients, there is no way that
ci has already been stored in a HCC. Thus, the only choices
considered for generating SGrFi are restricted to:

– Simply storing ci. The space requirements of this choice
is S2 if either c2i or c2i+1 has been stored, or S1, other-
wise. Please note that if c2i or c2i+1 has been stored, then
these coefficients must be the top coefficients in a stored
HCC. This can be checked in O(1) time by looking at
the TopCoeff hash table. Let Ben1 denote the per space
benefit of this choice.

– Combining ci with SGrF2i (SGrF2i+1). The space require-
ments for SGrFi in this case is S2+SGrF2i.sp (resp., S2+
SGrF2i+1.sp). Let Ben2 (resp., Ben3) denote the per space
benefit of this combination.

Given the aforementioned choices, SGrFi is set to:

1. ci∪ SGrF2i, if Ben2 = max{Ben1,Ben2,Ben3} and Ben2
is larger or equal to the per space benefit of SGrF2i. In
this case, SGrF2i+1 cannot be of any further use in upper
levels of the error tree. Thus, it is checked for insertion to
the min-heap, by comparing its per space benefit to that
of the stored HCC with the minimum per space benefit
(see Section 6.4).

2. ci∪ SGrF2i+1, if Ben3 = max{Ben1,Ben2,Ben3} and,
further, Ben3 is larger or equal to the per space benefit of
SGrF2i+1. In this case, SGrF2i cannot be of any further
use in upper levels of the error tree. Thus, it is checked
for insertion to the min-heap, by comparing its per space
benefit to that of the stored HCC with the minimum per
space benefit.

3. ci, otherwise. In this case, SGrF2i, SGrF2i+1 are checked
in succession for insertion to the min-heap, by compar-
ing their per space benefit to that of the stored HCC with
the minimum per space benefit.

Please note that, in the HCGreedyL2-Str algorithm, once
we have computed the SGrFi coefficient for any node ci, we
no longer need to keep in main memory the straddling paths
of its two subtrees.

6.4 Detailing the Operations of the Min-Heap

We now present the basic operations of the Min-Heap struc-
ture.

1. First(): Returns the stored HCC with the minimum per
space benefit. This is straightforward. The operation re-
quires O(1) time.

Hierarchically Compressed Wavelet Synopses 19

2. Pop(): Removes the First() item. The operation adjusts
the size of the Min-Heap, based on two factors:
– The size of the removed HCC, termed as hA in our

discussion. This is available in the third field of the
item (see Section 6.2 on how HCCs are stored).

– Whether removing this item requires adjusting the
space of some other HCC hB. This case occurs when
parent(top(hA))= bottom(hB) and the other child co-
efficient of bottom(hB) is not currently stored in the
Min-Heap. The former can be tested by first probing
the BottomCoeff hash table to see if parent(top(hA))
exists as the bottom-most coefficient in a stored HCC.
The latter can be tested by then probing the TopCo-
eff hash table for the other child of bottom(hB). If
both conditions are satisfied, then the space require-
ments of hB are adjusted and the standard heap pro-
cedure heapifyUp() is invoked in order to make sure
that no conditions are violated in the path of the heap
between the updated node and the root of the heap.
This heapifyUp() operation requires O(logB) time.

Thus. the Pop() operation requires a total of O(logB)
time.

3. Insert(hA): Inserts the given HCC hA in the Min-Heap.
This operation is presented in Algorithm 2. The running
time requirements of the Insert() operation depend on
the size of the inserted HCC and the number of popped
HCCs (Lines 6-10). In the worst case, for a HCC con-
taining O(logn) coefficient values, the operation may re-
quire O(logn× logB) time. However, an interesting ob-
servation is that for any HCC containing more than one
coefficient values, the insert operation is performed only
for the top coefficient value of the HCC. Thus, the amor-
tized cost of the insert operation per processed wavelet
coefficient remains O(logB).

4. Parse(): Scans the min-heap and extracts the stored HCCs
in a compact form with size at most B. In order to per-
form this step we need to combine the HCCs stored in
the Min-Heap. When checking each stored HCC hA, we
also check to see if there exists another unprocessed HCC
hB that needs to be processed before hA, and such that
hA can be attached on top of hB (so that their bitmaps are
combined). This requires checking the TopCoeff hash ta-
ble for the two children of bottom(hA). This step essen-
tially creates a recursive processing of the HCCs simi-
larly to a topological sort. Since the min-heap cannot
store more than O(B

S2
) entries, this operation requires a

total of O(B) time.

6.5 Details and Remarks

A question that naturally arises is why we chose to store the
current selection of the HCCs in a way that does not aggres-
sively combine them, even though storage dependencies are

procedure Insert(hA)
Input: HCC hA to insert into the Min-Heap.
1. A min-heap structure hcs is used to maintain the currently

selected HCCs for storage
2. Each entry in hcs has 3 fields: (1) hc: the stored HCC,

(2) ben: benefit of the HCC,
(3) sp: space needed for storing the HCC.

3. UsedB≤ B denotes the true space required to compactly store
the HCCs of the Min-Heap.

4. tophc = hcs.First()
5. lastPopped = /0
6. while UsedB+hA.sp > B AND tophc.ben

tophc.sp < hA.sp
hA.ben do

7. lastPopped = tophc
8. hcs.Pop(). Also update TopCoeff and BottomCoeff hash tables
9. Update UsedB based on discussion in Section 6.4
10. endwhile
11. Insert hA in the heap using standard heap operation.

Update TopCoeff, BottomCoeff and UsedB.
12. if UsedB < B then

Trim sufficient coefficient values from lastPopped and reinsert
it in the Max-Heap.

end

Fig. 2 Sketch of Insert algorithm.

indeed exploited. If we had pursued to aggressively merge
stored HCCs, coefficient values with large benefits might
end up in HCCs with several other small coefficient values,
e.g., a HCC containing the coefficient values 〈800,10,20,5〉.
This could potentially lead to HCCs with small to medium
overall per space benefit, even though a part of them exhibits
a large per space benefit. Please note that in the HCGreedyL2

algorithm, such a problem did not exist, as HCCs were at-
tached to existing HCCs after exhibiting globally the best
estimated per space benefit. Due to the streaming nature of
the HCGreedyL2-Str algorithm, this global estimate cannot be
achieved since future parts of the error tree have not been
unveiled yet. Thus, we need to be careful in our decisions to
aggressively merge HCCs.

6.6 Running Time and Space Requirements

Based on the analysis presented in Section 6.4, the oper-
ations associated with inserting a HCC in the Min-Heap
cost a total of O(logB) time. The insert operation at some
nodes may exhibit a higher cost but, as we explained in Sec-
tion 6.4, this cost is amortized over the coefficient values
that comprise the HCC. The space requirements are those of
the Min-Heap, the two hash tables and the straddling coef-
ficients. The Min-Heap and each hash table requires O(B)
space. Parsing the Min-Heap to extract the synopsis also
requires O(B) time. There can be at most O(logn) strad-
dling coefficients, of total size O(log2 n). Thus, the amor-
tized running time requirements per processed data item are
O(logB), while the space requirements are O(B+ log2 n).

20 Dimitris Sacharidis et al.

+
_

+_
+ +

+
_

+_
+ +

+
_

+_
_+ +

+
_

+

+

l = 0

_
+_
_

+_l = 1

_
_

+
+

+

_
+ _

Fig. 3 Error-tree structure for the sixteen two-dimensional Haar coef-
ficients for a 4×4 data array (data values omitted for clarity).

7 Extensions and Remarks

7.1 Multiple Dimensions

The Haar decomposition of a D-dimensional data array A re-
sults in a D-dimensional wavelet-coefficient array WA with
the same dimension ranges and number of entries. (The full
details as well as efficient decomposition algorithms can be
found in [2,28].) Consider a D-dimensional wavelet coeffi-
cient W in the wavelet-coefficient array WA. W contributes to
the reconstruction of a D-dimensional rectangular region of
cells in the data array A (i.e., W ’s support region). Further,
the sign of W ’s contribution (+W or −W) can vary along
the quadrants of its support region. The blank areas for each
coefficient correspond to regions of A whose reconstruction
is independent of the coefficient, i.e., the coefficient’s con-
tribution is 0. Each data cell in A can be accurately recon-
structed by adding up the contributions (with the appropriate
signs) of those coefficients whose support regions include
the cell.

Error-tree structures for multi-dimensional Haar wave-
lets can be constructed (in linear time) in a manner similar to
those for the one-dimensional case, but their semantics and
structure are somewhat more complex. A major difference
is that, in a D-dimensional error tree, each node (except for
the root, i.e., the overall average) actually corresponds to a
set of 2D−1 wavelet coefficients that have the same support
region but different quadrant signs and magnitudes for their
contribution. Furthermore, each (non-root) node t in a D-
dimensional error tree has 2D children corresponding to the
quadrants of the (common) support region of all coefficients
in t.5 If the maximum domain size amongst all dimensions
is Nmax, the height of the error tree will be equal to logNmax.
Note that the total domain size N can be as high as N = ND

max
when all dimensions have equal domain size. Figure 3 de-
picts an example error-tree structure for a two-dimensional
4×4 data set.

5 The number of children (coefficients) for an internal error-tree
node can actually be less than 2D (respectively, 2D−1) when the sizes
of the data dimensions are not all equal. In these situations, the expo-
nent for 2 is determined by the number of dimensions that are “active”
at the current level of the decomposition (i.e., those dimensions that
are still being recursively split by averaging/differencing).

7.1.1 Multi-dimensional Hierarchically Compressed
Wavelet Synopses

A multidimensional hierarchically compressed wavelet syn-
opsis (MHCWS) groups nodes (not coefficients) into paths
and thus requires additional information as to which coeffi-
cients of each node are included in the synopsis.

Definition 4 The composite value NV of some node in the
multidimensional error-tree is a pair 〈NVBIT,V 〉 consisting
of:

• A bitmap NVBIT of size 2D−1 identifying which coeffi-
cient values are stored. The number of stored coefficient
values is equal to the bits of NVBIT that are set.

• The set V of stored coefficient values.

Having properly defined the composite value of a node
we can now define a multidimensional hierarchically com-
pressed wavelet coefficient as follows.

Definition 5 A multidimensional hierarchically compressed
(MHCC) wavelet coefficient is a triplet 〈BIT,C,NV 〉 con-
sisting of:

• A bitmap BIT of size |BIT| ≥ 1, denoting the storage of
exactly |BIT| node values.

• The coordinate/index C of any stored coefficient in the
bottommost stored node.

• A set NV of |BIT| stored composite values.

We must note here that at any MHCC the coordinate of
any stored coefficient in its bottommost stored node can be
used, since the bitmap of that node’s composite value can
help determine which other coefficient values from the same
node have also been stored.

7.1.2 Changes to the Algorithms

We now describe the necessary changes to the HCDynL2 and
HCGreedyL2 algorithms for multi-dimensional data sets. The
modifications to HCApprL2 are similar to the ones of HC-

DynL2.

Changes to HCDynL2. The extensions to the HCDynL2 algo-
rithm are analogous to the corresponding extensions of prior
DP techniques [9] to multi-dimensional data sets. In par-
ticular, when obtaining an optimal MHCWS given a space
budget B, the algorithm given budget B should consider (i)
the optimal benefit M[i,B] assigning space B to the subtree
rooted at node i; and (ii) the optimal benefit F[i,B] assign-
ing space B to the subtree rooted at node i when at least
one of the coefficients of node i is forced to be stored (i.e.,
a composite value of the node is stored). The principle of
optimality also holds in this case for M[i,B] and F[i,B], im-
plying that optimal benefits at a node can be computed from
optimal solutions of the node’s subtrees.

Hierarchically Compressed Wavelet Synopses 21

At each node of the error tree, the optimal algorithm
needs to decide how many coefficients, if any, of this node
should be stored, whether they should be attached to some
path of its children subtrees, and how much space to allocate
to each child subtree. It should be noted that we only need
to decide how many coefficients (from 1 to 2D−1) of each
node should be stored, as it can be easily shown that among
all coefficient sets of k values, the set containing the coeffi-
cients with the k highest absolute normalized values exhibits
the best benefit.

When the algorithm checks if a node should be included
in the optimal solution but cannot be attached to any path
of the children subtrees, the space requirement for this node
is a function of the number k ≤ 2D−1 of coefficients to be
included (a choice to be made): S1(k) = sizeof(Coords) +
2D + k · sizeof(Value). Similarly, when the node at question
can be attached to some path the space requirement is again
a function of the number k of selected coefficients: S2(k) =
2D + k · sizeof(Value). Note that only in the first case the
node “pays” for the overhead sizeof(Coords) of creating a
new MHCC.

At each node of the error tree the algorithm must per-
form two tasks: (i) sort the 2D− 1 coefficients of this node
in O(D2D) time and O(2D) space; and (ii) for each space
budget 0≤ b≤ B∗ choose the optimal split of space among
the coefficients of this node and the 2D children nodes. Note
that, because a subtree rooted at a node at height l of the er-
ror tree can have up to O(2Dl) nodes, the maximum alloted
space at such a node is B∗ = min{B,O(2Dl)}. The second
task can be performed in O(2DB∗2), by solving a dynamic
programming recurrence on a binary tree of height D con-
structed over the children nodes — for details refer to [9].
Using similar analysis with Section 3 and since there are at
most ND

max
2Dl = N

2Dl nodes at height l it follows that the space
complexity becomes O(2DN logB), whereas the time com-
plexity becomes O(2DNB).

Finally, note that the ratio of benefits between the HC-

DynL2 algorithm and the traditional technique can become
as high as 1+logNmax×(2D−1)

m for m = b S1+logNmax×(2D−1)×S2
S1−1 c.

The increased maximum value of the above ratio, when com-
pared to the one-dimensional case, is not surprising, as in
multi-dimensional data sets the existence of multiple coef-
ficient values within each node of the error tree provides
far more opportunities to exploit hierarchical relationships
amongst stored coefficients, in order to reduce the storage
overhead of their coordinates. Also, note that in the mul-
tidimensional case this storage overhead (and thus the size
of S1) increases with the number of dimensions, due to the
increase in the number of the coefficient coordinates.

Changes to HCGreedyL2. For the HCGreedyL2 algorithm, when
considering whether to include a node in a MHCC, or to at-
tach it to a MHCC originating from one of the node’s sub-

trees, we utilize the node’s composite value that results in
the best per space benefit. This can be accomplished by (i)
sorting the node’s coefficient values based on their normal-
ized value; (ii) for 1 ≤ j ≤ 2D− 1 computing the per space
benefit of the composite value that stores the node’s j largest
normalized values; and (iii) selecting the composite value
with the overall best per space benefit. For nodes where, at
some point of the algorithm’s execution, some coefficient
values have already been selected for storage, we only need
to consider in the above case coefficient values that have
not already been included in the solution and properly de-
termine the space needed for their storage. The HCGreedyL2

algorithm, given a budget of B, requires O(2DN) space and
only O(D2DN +2DB logNmax) time.

7.2 Dealing with Massive Data Sets

In order to improve the running time and space requirements
of our algorithms for massive data sets, we can employ an
initial thresholding step to discard coefficients with small
values and apply our algorithms to the remaining Nz � N
coefficients. Such an approach is commonly followed for
constructing wavelet synopses; the work in [28], for exam-
ple, maintains only Nz coefficients after the decomposition
to deal with sparse data sets of Nz � N tuples. Preserving
only Nz coefficients means that there can be at most Nz “im-
portant” nodes in the wavelet tree (in practice much fewer,
as many large coefficients usually reside in a single node),
which is a significant decrease compared to N/2D, the total
number of nodes.

More precisely, it is easy to see that all of our algorithms
need to perform some computations to nodes that either (i)
contain a non-zero coefficient value; or (ii) contain non-zero
coefficient values at (at least) two of their subtrees. Thus, the
total number of nodes where some computation needs to be
performed is O(2Nz− 1) = O(Nz). By sorting these nodes
using a pre-order traversal it is easy to mark for each node:
(i) the closest ancestor anc(i) of i where computation needs
to be performed; (ii) the subtree of anc(i) that follows i; and
(iii) the first descendant of i where computation needs to
be performed. This process requires O(Nz logNz) time, but
allows for the execution of the algorithms with complexi-
ties that depend on Nz rather than N. Of course, some care
is needed because the children of each node in the above
“sparse” error-tree are not direct descendants, thus requiring
proper calculation of the space needed when storing a node’s
composite value and combining it with a MHCC originat-
ing from one of the node’s subtrees. Thus, when attaching
a composite value to a MHCC that lies j levels below it
in the sparse error tree, the value of S2 must be set as fol-
lows: S2(k) = j× (2D−1)+ j + k · sizeof(Value). The first
summand in the above formula is due to the storage of the

22 Dimitris Sacharidis et al.

NVBIT bitmaps for both the current node and all the inter-
mediate, missing nodes until reaching the MHCC of the de-
scendant node. The second summand determines the num-
ber of these bitmaps, while the third summand is due to the
storage of k coefficient values in the node. Please note that
each node of the sparse error-tree may exhibit different S2
values for each of its subtrees, due to the potentially differ-
ent resolution levels of each subtree’s root node.

7.3 Optimizing for Other Error Metrics

All algorithms presented here can be made to optimize for
any weighted Lw

2 error metric. These error metrics include
the sum squared relative error with sanity bound s (set wi =

1
max{di,s}), and the expected sum squared error when queries
are drawn from a workload distribution, in which case the
weights correspond to the probability of occurrence for each
query (set wi = pi).

For the weighted Lw
2 metric and using the standard Haar

decomposition process the Parseval theorem does not apply
and hence Problem 2 does not follow from Problem 1. How-
ever the recent work of [27] demonstrated that the Parseval
theorem applies when the decomposition process is altered
to incorporate the weights. The result is a modified Haar
basis for which the Parseval applies and, therefore, an anal-
ogous to Problem 2 formulation exists and our algorithms
require no additional changes.

7.4 Query Performance Issues

For a synopsis size of B, due to the use of a variable-length
header for the stored HCC coefficients, the retrieval of a
single coefficient value requires O(B) time, in contrast to
O(min{B, logN}) time for the conventional wavelet synop-
ses, where binary search is employed if the stored coef-
ficients are sorted based on their coordinates. While this
may seem as a potentially large increase in the resulting
query time, we need to make two important observations:
(i) The used synopses are typically memory resident and of
small size (B� N); and (ii) To answer even point queries,
O(logN) coefficients need to be retrieved. The number of
retrieved coefficients is increased even more if a query that
requires the evaluation of multiple individual data values (or
data values in multiple areas of the data) is issued. This has
the effect that a linear scan of the synopsis, to retrieve at
batch all the desired coefficients, even in conventional wave-
let synopses, is often as efficient as performing a logarithmic
(or larger) number of binary searches in the synopsis. Thus,
we expect that any potential running time deterioration due
to the use of our proposed technique will be minimal. On
the other hand, the improvements in the obtained accuracy

achieved by the use of HCWS can be significant, as shown
in Section 8.

8 Experimental Study

In this section, we present an extensive experimental study
of our proposed algorithms for constructing hierarchically
compressed wavelet synopses over large data sets. Our ob-
jective is to evaluate the scalability and the obtained accu-
racy of our algorithms when compared to conventional syn-
opses. Our main findings include:

• Improved Space Utilization. The algorithms presented
in this work create HCWS that consistently exhibit signif-
icant reductions in terms of the sum squared error of the
approximation due to the improved storage utilization of the
selected wavelet coefficients.

• Efficient, Near-Optimal Greedy HCWS Construction.
Even though the HCGreedyL2 algorithm does not provide any
guarantees on the quality of the obtained solution, in all
of our experiments it provided near optimal results. At the
same time, the HCGreedyL2 algorithm exhibits running time
and space requirements on par with the conventional synop-
sis construction method. Moreover, our proposed HCGreedyL2-

Str algorithm consistently produces HCWS with errors very
close to those of the HCGreedyL2 algorithm.

8.1 Testbed and Methodology

Techniques and Implementation Details. We compare the
algorithms HCDynL2, HCApprL2, HCGreedyL2, HCGreedyL2-Str

introduced in this paper against the conventional synopsis
construction algorithm denoted as Classic. The Classic algo-
rithm utilizes a heap to identify the coefficients with the
largest absolute normalized values, while not exceeding the
available space budget. All algorithms were implemented in
C++ and the experiments reported here were performed on
a 2.4 GHz machine.

Data Sets. We have performed an extensive experimental
study with several one-dimensional synthetic and real-life
data sets; we present here the most significant findings. Each
synthetic data set, termed Zipfian, is produced by generating
50 different zipfian distributions with the same skew param-
eter (where the values are placed in random locations of the
data) and then summing up these 50 smaller data sets. We
vary the domain size from N = 214 up to 224 = 16,777,216
and examine two values of the zipfian parameter, z = 0.7
and z = 1.2, i.e., average and high skew respectively. The
first real data set, denoted as Weather6, contains N = 65,536

6 Data available at:
http://www-k12.atmos.washington.edu/k12/grayskies/

Hierarchically Compressed Wavelet Synopses 23

solar irradiance measurements obtained from a station at the
University of Washington. The second real data set, denoted
as Light, consists of light measurements from the Intel Labs
data set [7]. In all experiments involving Light, we use the
measurements of the sixth mote (sensor) of this data set.

Performance Metrics. We first investigate the running time
scalability of our algorithms when varying the available syn-
opsis budget, the data domain size and the ε parameter for
the HCApprL2 algorithm. In order to assess the quality of
the constructed HCWS we measure the sum squared error
(SSE). To emphasize on the effectiveness over conventional
synopses: (i) we explicitly measure the SSE increase of Clas-

sic relative to HCGreedyL2; and (ii) show how much more
space (space savings) we would need to allocate to a conven-
tional synopsis in order for it to become as accurate as our
constructed HCWS. In a graph depicting the resulting SSE
by all algorithms when varying the synopsis size, the SSE
increase in absolute value can be measured at each point by
the vertical distance between the graph of the Classic tech-
nique from the graph of either the HCDynL2, the HCApprL2,
the HCGreedyL2 or the HCGreedyL2-Str algorithm. Correspond-
ingly, in the same graph, the space savings of our algorithms
can be (roughly) measured, for any space budget assigned to
our algorithms, by the horizontal distance to the right, start-
ing of course at the point of the graph corresponding to our
technique and for the desired space budget, until we meet
the graph (error) of the Classic algorithm. Recall that the goal
of deploying a HCWS is to achieve better storage utiliza-
tion and to improve the accuracy of the synopsis by storing,
within a given space budget, a larger number of “important”
coefficient values than a traditional wavelet synopsis. The
space savings essentially provide us with an insight on how
many “important” wavelet coefficients the HCWS contains,
in addition to the ones selected by the Classic algorithm, that
are responsible for the achieved SSE reduction (and, thus,
how much can our algorithms exploit hierarchical relation-
ships amongst coefficient values selected for storage). The
combination of the two performance metrics also reveals
some helpful characteristics on the distribution of the co-
efficient values. For example, assume that our algorithms
consistently result in half the error achieved by the Classic

algorithm, but that the space savings increase (decrease) as
the synopsis size increases. This implies that as the synop-
sis size increases, and more coefficient values are stored, the
number of non-stored coefficient values that are responsi-
ble for half of the remaining SSE also increases (decreases),
since the Classic algorithm requires increasingly more (less)
space to reduce its SSE by 50%.

Further, we explicitly measure the deviation of the error
exhibited by the solution of our HCGreedyL2 algorithm, when
compared to the corresponding optimal error exhibited by
the solution of our HCDynL2 algorithm, when varying either
the available synopsis budget, or the data domain size. We

also measure the errors achieved by our HCGreedyL2-Str algo-
rithm, when compared to the corresponding errors of our HC-

GreedyL2 algorithm. Finally, we plot the approximation ratio
achieved by the HCApprL2 algorithm against the theoretical
bound.

8.2 Experimental Results

Scalability. Figure 4 investigates the scalability, in terms
of the total running time, for all methods while the syn-
opsis size and the domain size is varied. For the HCApprL2

algorithm we also plot its running time when varying the
approximation parameter. Figure 4(a) presents the running
time for the Weather data set when the available synopsis size
increases from 512 to 32,768 bytes. The approximation pa-
rameter for the HCApprL2 algorithm was set to ε = 0.05 and
0.01. Please note that logarithmic axes are used for both the
resulting running time and the synopsis size. In this exper-
iment, the HCGreedyL2 and HCGreedyL2-Str algorithms con-
sistently construct a HCWS within a few hundredths of a
second, and almost as fast (with an increase in running time
by a factor between 2 and 5) as Classic constructs a conven-
tional synopsis. The HCDynL2 algorithm could not construct
large HCWSs within a reasonable time, as depicted on Fig-
ure 4(a), due to its linear dependency on B. Similar trends
were observed for all data sets and, thus, the graphs for the
HCDynL2 algorithm are often omitted.

Figure 4(b) illustrates the scalability of the algorithms as
the domain size increases from 214 up to 224 for the Zipfian

data set with a skew parameter of 1.2. The synopsis size
is set to a fixed percentage (4%) of the original data size.
Therefore, the time complexity of HCDynL2 essentially be-
comes quadratic on the domain size. This is depicted on Fig-
ure 4(b), as the running time of HCDynL2 for domains larger
than 216 becomes prohibitive, while HCGreedyL2 can con-
struct a HCWS in about 3.5 seconds, even for a domain size
of 224. The running time of the streaming variant HCGreedyL2-

Str increases at a lower rate than that of HCGreedyL2, as the
domain size increases. This is attributed to the fact that the
running time complexity for the HCGreedyL2-Str algorithm is
based on a pessimistic case where every HCC tested for in-
sertion in the min-heap requires O(logB) time. In practice,
most of the HCCs in large domains do not have a sufficiently
large per space benefit to be inserted into the min-heap, thus
requiring only O(1) time for them. Finally, note that even if
it exhibits running times that are up to 2 orders of magnitude
larger than the ones of HCGreedyL2, the HCApprL2 algorithm
scales significantly better than the HCDynL2 algorithm.

Figure 4(c) plots the running time of HCApprL2 as the ap-
proximation parameter ranges from ε = 0.0001 to 0.2 for the
Zipfian data set with a skew parameter of 1.2, N = 220 data
values and a fixed value of B = 32768. As the approximation

24 Dimitris Sacharidis et al.

 0.01

 0.1

 1

 10

 100

 512 1024 2048 4096 8192 16384 32768

R
un

ni
ng

 T
im

e
(s

ec
)

Synopsis Size (bytes)

Weather, Domain N = 216

HCDynL2
HCApprL2 (ε=.01)
HCApprL2 (ε=.05)

HCGreedyL2-Str
HCGreedyL2

Classic

(a) Running Time vs Synopsis Size

 0.001

 0.01

 0.1

 1

 10

 100

 14 16 18 20 22 24
R

un
ni

ng
 T

im
e

(s
ec

)
log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

HCDynL2
HCApprL2 (ε=.01)

HCGreedyL2
HCGreedyL2-Str

Classic

(b) Running Time vs Domain Size

 1

 10

 100

 0.0001 0.001 0.01 0.05 0.1 0.2

R
un

ni
ng

 T
im

e
(s

ec
)

epsilon (ε)

Zipfian, Skew z = 1.2, Domain N = 220, B = 32,768

HCApprL2

(c) Running Time vs ε

Fig. 4 Running Time Performance of all Algorithms

 0.1

 1

 10

 100

 1000

 10000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 0

 10

 20

 30

 40

 50

 60

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Fig. 5 HCWS Quality vs Synopsis Size for Zipfian z = 0.7, N = 220

requirements relax, the running time of HCApprL2 decreases
exponentially.
HCWS Quality. In Figures 5, 6, 7 and 8 we investigate the
quality of the HCWS synopses for the four data sets de-
scribed in Section 8.1, as we vary the synopsis size from
512 to 32,768 bytes. For all data sets, we measure the SSE
of the resulting synopses.

Figure 5(a) plots the SSE for all methods on the Zipfian

data set with the average skew value. The HCGreedyL2 algo-
rithm consistently constructs a synopsis with significantly
smaller errors compared to a conventional synopsis. More-
over, the HCGreedyL2-Str algorithm achieves similar bene-
fits, as its performance closely matches that of HCGreedyL2.
On the other hand, the accuracy of the HCApprL2 algorithm
quickly approaches the point where the algorithm manages
to construct a synopsis that has captured a sufficiently large
fraction 1/(1 + ε) of the data’s energy (and it is, thus, cer-
tainly also within the same 1/(1+ε) factor from the optimal
algorithm) — hence, further increasing the budget leads to
the HCApprL2 algorithm constructing the same synopsis. Fig-
ure 5(b) plots the SSE increase (i.e., the ratio of the SSE er-
rors) of Classic and HCGreedyL2-Str over HCGreedyL2. We first
observe that for a space budget of B = 4096, HCGreedyL2

constructs an HCWS that has almost 4.5 times less SSE

than a conventional synopsis. HCGreedyL2-Str constructs syn-
opses with similar SSE compared to HCGreedyL2. Compar-
ing the two greedy heuristics, HCGreedyL2-Str achieves 2%
lower SSE in the best case (B = 4096), and 7.4% larger SSE
in the worst case (B = 2048), than HCGreedyL2. Figure 5(b)
illustrates the space savings of the two greedy algorithms
compared to a conventional synopsis that would achieve the
same SSE. As the synopsis size increases, the space savings
of our algorithms in absolute values (i.e., in bytes) increase
as well. In relative terms (i.e., as a percentage to the synopsis
size), the best case for our methods appears for B = 4096,
where a HCWS requires 57.4% less space than a conven-
tional synopsis. The space savings of HCGreedyL2-Str show a
similar trend with a maximum savings of 58% for B = 4096.

Figure 6 repeats the above setup using the Zipfian data
set with high skew (z = 1.2). The higher skew results in a
more compressible data set with the SSE decreasing rapidly
with B, as depicted on Figure 6(a). In this data set, construct-
ing hierarchically compressed synopses proves highly ben-
eficial as shown in Figures 6(b) and 6(c). HCGreedyL2 con-
struct a synopsis with up to 8.3 times lower SSE than Classic

(for B = 8192). Furthermore, the space savings of the HC-

GreedyL2 algorithm are significant (up to 64% for a synop-
sis size of B = 4096). Note that HCGreedyL2-Str constructs

Hierarchically Compressed Wavelet Synopses 25

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
09)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 2

 3

 4

 5

 6

 7

 8

 9

 512 1024 2048 4096 8192 16384 32768
S

S
E

 in
cr

ea
se

 o
ve

r
H

C
G

re
ed

yL
2

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 10

 20

 30

 40

 50

 60

 70

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Fig. 6 HCWS Quality vs Synopsis Size for Zipfian z = 1.2, N = 220

synopses with marginally increased SSE compared to HC-

GreedyL2 (up to 7% increase, with an average increase of
2%).

Figures 7 and 8 repeat the previous experimental setup
for the real-life data sets, Weather and Light, respectively.
For both data sets, the benefits, in terms of the reduction
in the SSE, increase with the synopsis size. For the Weather

data set, the HCGreedyL2 algorithm results in up to 2.36 times
lower SSE (for B = 32768), as shown in Figure 7(b). On
the other hand, Figure 8(b) shows that in the Light data set,
the HCGreedyL2 algorithm achieves a reduction in SSE of up
to 4.7 times (for B = 32768). For both real data sets, and
for synopsis sizes larger than 1024 bytes, the space savings
of our methods are consistently high (please note our ear-
lier discussion that the benefits in absolute terms continu-
ously increase in these cases as well, even though the rela-
tive space savings start decreasing at some point), as shown
in Figures 7(c) and 8(c).

The effect of the domain size in the performance of our
algorithms is illustrated in Figure 9. In this setup we use the
Zipfian data set with the high skew value (z = 1.2) and vary
the domain size from N = 214 up 224, while maintaing the
synopsis size to 4% of N. Similar findings hold for other
space ratios as well as for the average skew data set. As seen
in Figure 9(a), both greedy variants consistently construct
synopses with lower SSE (up to 7.4 times) than Classic. Sim-
ilarly, our greedy heuristics are able to achieve significant
space savings (up to 69% for the HCGreedyL2 algorithm and
up to 66% for the HCGreedyL2-Str algorithm), compared to
the Classic algorithm.

HCGreedyL2, HCGreedyL2-Str and HCApprL2 Accuracy. The
HCGreedyL2 and HCGreedyL2-Str algorithms, as we have seen,
require only frugal time and space in order to construct a
wavelet synopsis when compared to the optimal HCDynL2 al-
gorithm. A question that naturally arises is how close is the
error of a HCWS constructed by the greedy algorithms to
the one of the optimal HCWS. Thus, in the following set of
experiments we measure the SSE increase incurred by HC-

GreedyL2 and HCGreedyL2-Str when constructing a HCWS —
this is, essentially, the ratio between the errors of the greedy
variants and the HCDynL2 algorithms.

Figure 10(a) shows the SSE increase ratio for the Weather

data set as the space budget is varied from 512 to 4096 bytes.
It is easy to see that the error of the HCWS obtained by
HCGreedyL2 (HCGreedyL2-Str) is always within 1.6% (4.6%)
of the error achieved by the optimal HCWS. Figure 10(b)
shows the SSE increase for the Zipfian data set as the do-
main size varies from 210 to 215, while the synopsis size
is set to 1% of the original data. Such a setup is chosen
so that the HCDynL2 algorithm, which provides the optimal
HCWS, can execute within the available memory and within
a time window of one hour. Again, the error of the HCWS
obtained by HCGreedyL2 is within 2.2% of the error achie-
ved by the optimal HCWS, while in 3 cases the HCGreedyL2

algorithm produced the optimal solution. Regarding the ac-
curacy of HCGreedyL2-Str, note that in the worst case it pro-
duces HCWS with error which is within 12% (and with an
average value of 4%) of the optimal.

To measure the quality of HCApprL2, we plot the approx-
imation ratio (benefit of constructed HCWS over the bene-
fit of the optimal HCWS) for HCApprL2 as ε varies in Fig-
ure 10(c). Further, we also plot the theoretical bound of 1

1+ε

for reference. Observe that HCApprL2 consistently achieves
a HCWS with approximation ratio significantly larger than
the theoretical bound.

9 Related Work

The wavelet decomposition has been applied successfully
as a data reduction mechanism in a wide variety of appli-
cations. Wavelets have been used in answering range-sum
aggregate queries over data cubes [29,28] and in selectiv-
ity estimation [21]. The effectiveness of Haar wavelets as
a general-purpose approximate query processing tool was
demonstrated in [2]. For the case of data sets with multi-
ple measures the authors in [5,6] introduce the notion of

26 Dimitris Sacharidis et al.

 0.1

 1

 10

 100

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Weather, Domain N = 216

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 512 1024 2048 4096 8192 16384 32768
S

S
E

 in
cr

ea
se

 o
ve

r
H

C
G

re
ed

yL
2

Synopsis Size (bytes)

Weather, Domain N = 216

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 25

 30

 35

 40

 45

 50

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Weather, Domain N = 216

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Fig. 7 HCWS Quality vs Synopsis Size for Weather, N = 216

 0.1

 1

 10

 100

 1000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Light, Domain N = 215

HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

Classic
HCGreedyL2-Str

HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Light, Domain N = 216

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 30

 35

 40

 45

 50

 55

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Light, Domain N = 215

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Fig. 8 HCWS Quality vs Synopsis Size for Light, N = 215

 1

 10

 100

 1000

 10000

 14 16 18 20 22 24

S
S

E
 (

x1
05)

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

Classic
HCGreedyL2-Str

HCGreedyL2

(a) SSE vs Domain Size

 1

 2

 3

 4

 5

 6

 7

 8

 14 16 18 20 22 24

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

Classic
HCGreedyL2-Str

(b) SSE Increase vs Domain Size

 10

 20

 30

 40

 50

 60

 70

 14 16 18 20 22 24

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Domain Size

Fig. 9 HCWS Quality vs Domain Size for Zipfian z = 1.2, B = 0.04N

extended wavelets; some further improvements were pre-
sented in [15], where a streaming algorithm for the above
problem is also introduced. A common characteristic of the
work in [5,6,15] with this paper is that all of these papers
seek to exploit storage dependencies amongst stored coeffi-
cient values. However, these storage dependencies are only
amongst coefficient values, of different measures, that corre-
spond to the same coefficient coordinates. Thus, the storage
overhead of a coefficient value is not influenced by whether
other coefficient values in the path towards the root of the er-

ror tree have also been stored. This observation implied that
the error tree structure does not need to be taken into ac-
count at all. Due to this crucial difference with the problem
tackled in this paper, the techniques in [5,6,15] cannot be
used to solve our optimization problem, and are in fact com-
pletely different than the techniques that we propose here.
Similarly, extending our proposed algorithms of this paper
to multi-measure data sets requires significant modifications
and is an interesting topic of future work. I/O efficient algo-
rithms for maintenance tasks were presented in [16].

Hierarchically Compressed Wavelet Synopses 27

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 512 1024 2048 3584

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

D
yn

L2

Synopsis Size (bytes)

Weather, Domain N = 216

HCGreedyL2-Str
HCGreedyL2

optimal

(a) HCGreedyL2 Accuracy vs Synopsis Size

 1

 1.05

 1.1

 1.15

 10 11 12 13 14 15
S

S
E

 in
cr

ea
se

 o
ve

r
H

C
D

yn
L2

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.01N

HCGreedyL2-Str
HCGreedyL2

optimal

(b) HCGreedyL2 Accuracy vs Domain Size

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

A
pp

ro
xi

m
at

io
n

R
at

io

epsilon (ε)

Light, Domain N = 215

HCApprL2
bound

(c) HCApprL2 Accuracy vs ε

Fig. 10 HCGreedyL2, HCGreedyL2-Str, and HCApprL2 Accuracy

In a previous work [1], the authors proposed the stor-
age of coefficient values forming a rooted subtree of the er-
ror tree. While such an approach was guaranteed to provide
a worse benefit than the conventional thresholding process,
their techniques performed well for signal de-noising pur-
poses. However, this work neither considered reducing the
storage overhead of the wavelet coefficients’ coordinates,
nor did it incorporate such an objective in the thresholding
process. Moreover, the requirement that rooted subtrees be
stored, rather than arbitrary paths of coefficient values, often
required the storage of many small coefficient values that
simply happened to lie on root-to-leaf paths of other large
coefficient values.

A lot of recent work focus on constructing wavelet syn-
opses that minimize error metrics other than SSE. The work
in [8] constructs wavelet synopses that probabilistically min-
imize the maximum relative or absolute error incurred for
reconstructing any data value. The work in [4] provides a
sparse approximation scheme for the same problem. While
solving entirely an entirely different problem, our HCApprL2

algorithm shares in fact several common characteristics in
its operation with the algorithm in [4]. However, the HCAp-

prL2 algorithm is slightly more complicated due to the two
mutually recursive functions that it needs to approximate,
and the increased number of breakpoint combinations of
children nodes that it needs to consider in its operation. Such
details also lead to a more tedious proof of its correctness.
The work in [9] showed that it is possible to deterministi-
cally construct wavelet synopses for the same problem as
in [8] and provided a novel dynamic programming recur-
rence, extensible [10] to any distributive error metric. Sim-
ilar ideas were employed in [23] to construct optimal syn-
opses in sub-quadratic time for a particular class of error
metrics. Further, the work in [12] improves the space re-
quirements of the aforementioned dynamic programming al-
gorithms. For the same problem of optimal weighted syn-
opses, the work in [27] constructs a wavelet-like basis so
that the Parseval’s theorem applies and, thus, the conven-

tional greedy thresholding technique can be used. Assum-
ing all range-sum queries are of equal importance, the au-
thors in [20] proved that the heuristics employed in [21] are
in fact optimal. The works in [13,14] showed that for er-
ror metrics other than SSE, keeping the original coefficient
values is suboptimal. Hence, they propose approximation al-
gorithms for constructing unrestricted wavelet synopses that
involve searching for the best value to assign for each coef-
ficient stored.

Wavelets have also found broad use in data stream envi-
ronments. The dynamic maintenance of Haar synopses was
first studied in [22]. The works in [3,11] use sketching tech-
niques for maintaining conventional wavelet synopses over
rapidly changing data streams. The approximation schemes
of [13,14] for unrestricted wavelet synopses are also exten-
sible for the case of time-series data streams. A fast greedy
algorithm for maximum-error metrics was introduced in [18]
for the problem of constructing wavelet synopses over time-
series data streams.

10 Conclusions

In this paper, we proposed a novel compression scheme for
constructing wavelet synopses, termed Hierarchically Com-
pressed Wavelet Synopses (HCWS). Our scheme seeks to
improve the storage utilization of the wavelet coefficients
and, thus, achieve improved accuracy to user queries by re-
ducing the storage overhead of their coordinates. To accom-
plish this goal, our techniques exploit the hierarchical de-
pendencies among wavelet coefficients that often arise in
real data sets due to the existence of large spikes among
neighboring data values and, more importantly, incorporate
this goal in the synopsis construction process. We initially
presented a dynamic programming algorithm, along with a
streaming version of this algorithm, for constructing an op-
timal HCWS that minimizes the sum squared error given a
space budget. We demonstrated that while in the worst case
the benefit of our DP solution is only equal to the benefit of

28 Dimitris Sacharidis et al.

the conventional thresholding approach, it can often be sig-
nificantly larger, thus achieving significantly reduced errors
in the data reconstruction. We then presented an approxima-
tion algorithm with tunable guarantees leveraging a trade-off
between synopsis accuracy and running time. Finally, we
presented a fast greedy algorithm, along with a streaming
version of this algorithm. We demonstrated that both of our
greedy heuristics always exhibited near-optimal results in
our experimental evaluation, with a running time on par with
conventional thresholding algorithms. Extensions for multi-
dimensional data sets, running time improvements for mas-
sive data sets and generalization to other error metrics were
also introduced. Extensive experimental results demonstrate
the effectiveness of HCWS against conventional synopsis
techniques. As a concluding remark, future work directions
include the design of algorithms for creating HCWS that op-
timize for an even wider class of error metrics.

References

1. Baraniuk, R., Jones, D.: A signal-dependent time-frequency rep-
resentation: fast algorithm for optimal kernel design. ISP 42(1),
134–146 (1994)

2. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Ap-
proximate query processing using wavelets. In: Proceedings of
the International Conference on Very Large Data Bases (VLDB),
pp. 111–122 (2000)

3. Cormode, G., Garofalakis, M., Sacharidis, D.: Fast approximate
wavelet tracking on streams. In: Proceedings of the International
Conference on Extending Database Technology (EDBT) (2006)

4. Deligiannakis, A., Garofalakis, M., Roussopoulos, N.: A fast ap-
proximation scheme for probabilistic wavelet synopses. In: Pro-
ceedings of the 17th International Conference on Scientific and
Statistical Database Management (SSDBM) (2005)

5. Deligiannakis, A., Garofalakis, M., Roussopoulos, N.: Extended
wavelets for multiple measures. ACM Transactions on Database
Systems 32(2) (2007)

6. Deligiannakis, A., Roussopoulos, N.: Extended wavelets for mul-
tiple measures. In: Proceedings of ACM International Conference
on Management of Data (SIGMOD), pp. 229–240 (2003)

7. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong,
W.: Model-Driven Data Acquisition in Sensor Networks. In:
VLDB (2004)

8. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guar-
antees. In: Proceedings of ACM International Conference on Man-
agement of Data (SIGMOD), pp. 476–487 (2002)

9. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding
for maximum-error metrics. In: Proceedings of the ACM Sym-
posium on Principles of Database Systems (PODS), pp. 166–176
(2004)

10. Garofalakis, M., Kumar, A.: Wavelet synopses for general error
metrics. ACM Transactions on Database Systems 30(4), 888–928
(2005)

11. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Surf-
ing wavelets on streams: One-pass summaries for approximate ag-
gregate queries. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB) (2001)

12. Guha, S.: Space efficiency in synopsis construction algorithms. In:
Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 409–420 (2005)

13. Guha, S., Harb, B.: Wavelet synopsis for data streams: minimizing
non-euclidean error. In: Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining (KDD),
pp. 88–97 (2005)

14. Guha, S., Harb, B.: Approximation algorithms for wavelet trans-
form coding of data streams. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2006)

15. Guha, S., Kim, C., Shim, K.: Xwave: Approximate extended
wavelets for streaming data. In: Proceedings of the International
Conference on Very Large Data Bases (VLDB), pp. 288–299
(2004)

16. Jahangiri, M., Sacharidis, D., Shahabi, C.: Shift-Split: I/O efficient
maintenance of wavelet-transformed multidimensional data. In:
Proceedings of ACM International Conference on Management of
Data (SIGMOD) (2005)

17. Jawerth, B., Sweldens, W.: An Overview of Wavelet Based Mul-
tiresolution Analyses. SIAM Review 36(3), 377–412 (1994)

18. Karras, P., Mamoulis, N.: One-pass wavelet synopses for
maximum-error metrics. In: Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pp. 421–432 (2005)

19. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press,
2nd edition (1999)

20. Matias, Y., Urieli, D.: Inner-product based wavelet synopses for
range-sum queries. In: Proceedings of the 14th Annual European
Symposium on Algorithms (ESA), pp. 504–515 (2006)

21. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for
selectivity estimation. In: Proceedings of ACM International Con-
ference on Management of Data (SIGMOD), pp. 448–459 (1998)

22. Matias, Y., Vitter, J.S., Wang, M.: Dynamic maintenance of
wavelet-based histograms. In: Proceedings of International Con-
ference on Very Large Data Bases (VLDB), pp. 101–110 (2000)

23. Muthukrishnan, S.: Subquadratic algorithms for workload-aware
haar wavelet synopses. In: Proceedings of the IARCS Annual
Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS) (2005)

24. Natse, A., Rastogi, R., Shim, K.: WALRUS: A Similarity Retrieval
Algorithm for Image Databases. In: Proceedings of ACM Interna-
tional Conference on Management of Data (SIGMOD) (1999)

25. Poosala, V., Ioannidis, Y.E.: Selectivity Estimation Without the
Attribute Value Independence Assumption. In: VLDB (1997)

26. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer
graphics: theory and applications. Morgan Kaufmann Publishers
Inc. (1996)

27. Urieli, D., Matias, Y.: Optimal workload-based weighted wave-
let synopses. In: Proceedings of International Conference on
Database Theory (ICDT) (2005)

28. Vitter, J.S., Wang, M.: Approximate computation of multidimen-
sional aggregates of sparse data using wavelets. In: Proceedings
of ACM International Conference on Management of Data (SIG-
MOD), pp. 193–204. ACM Press (1999)

29. Vitter, J.S., Wang, M., Iyer, B.R.: Data cube approximation and
histograms via wavelets. In: Proceedings of the International Con-
ference on Information and Knowledge Management (CIKM), pp.
96–104 (1998)

