Domain-Specific Lectures in Data Science

Submitted by webmaster on Sun, 03/07/2021 - 04:00
Course No: 
194068
Course Type: 
VU
Term: 
2021S
Weekly Hours: 
2.0
Lecturer: 
Allan Hanbury
Language: 
English
Objective: 

Domain-specific courses in Module DSA of the study program Data Science, which are selected from a list created in consultation with the lecturers of the interdisciplinary lecture series and administered by the Study Commission.

Content: 

Domain-specific content
 

  • 226.052 VO Freshwater quality and ecology + 226.039 Seminarreihe Wassergütewirtschaft
  • 226.048 SE 2.0/2.0 Ecology
  • 120.031 VO 1.0/1.5 Introduction to Earth Observation
  • 120.034 VO 1.0/1.5  Data Retrieval from Earth Observation
  • 120.035 UE 1.0/1.5  Data Retrieval from Earth Observation
  • 120.031 VO 1.5/1.0 Introduction to Earth Observation
  • 120.034 Data Retrieval from Earth Observation
  • 389.159 VU 3.0/2.0 Network Security
  • 202.064 Computational Biomaterials and Biomechanics
  • 1564 Humanitarian Logistics (WU Wien)
  • 220029 VO 3.0/2.0 Journalismus im Wandel medialer Bedingungen (Uni. Wien, in German)
  • 840.036 Methoden der Medizin (Med. Uni. Wien, in German)
  • 851.099 Epidemiological Methods (Med. Uni. Wien)
  • 100015 VO NdL: Germanistik digital (Uni. Wien)
  • 166.142 Biologie 
  • 185.329 Grundlagen der Klinischen Medizin 
  • 185.334 Klinische Medizin
  • 330.214 Project and Enterprise Financing 
  • 301905 Information-processing in neuronal networks (Uni. Wien)
  • 311.114 Industrial Manufacturing Systems 
  • 330.273 Assistance Systems in Manufacturing 2
  • 330.289 Cobot Studio @Pilot Factory for Industry 4.0
  • 230.016 Road Operations

Further lectures will be added in alignment with the Interdisciplinary Lecture Series in Data  Science (194.046)
The selection of the respective lecture should be coordinated with the topic chosen for the course 194.047 Interdisziplinary Project in Data Science.

Information: 
Notes: 
Examination: 

<p>The assessment is based on written tests, continuous evaluation as part of exercises, as well as by the evaluation of assignments and/or presentations. Details are available in the respective course descriptions.</p>

Recommendation: